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Abstract—We apply the generalized vector sampled pattern
matching (GVSPM) method to an inverse parameter problem
for the reconstruction of electrical impedance tomography (EIT).
Most of the inverse problems are reduced into solving for an
ill-posed system of equations whose solution is not uniquely
determined. The GVSPM introduced in this paper enables us to
select the physically existing solution among possible ones. By
applying GVSPM for EIT reconstruction, this point is verified by
reliable reconstructed images.

Index Terms—Electrical impedance tomography (EIT), EIT
reconstruction, finite volume method, generalized vector sampled
pattern matching (GVSPM), sensitivity matrix method.

I. INTRODUCTION

E LECTRICAL impedance tomography (EIT) is recon-
structing the conductivity distribution by the measured

surface electrical potential distribution around the target when
injecting current into the object. The surface electrical potential
distribution generated by the injected current could be obtained
as a solution of the Laplace equation. This leads EIT to a
functional tomography depending on the medium parameter as
well as boundary condition. This means that it is necessary to
solve an inverse parameter problem for the realization of EIT
which is difficult due to the ill-posed inverse problem. This is
because boundary measurements are highly sensitive to a change
in impedance near an electrode but far less sensitive to a central
impedance change, meaning that large changes in conductivity
may produce a small change in boundary voltage [1].

To obtain the normalized conductivity changes, we employ
the generalized vector sampled pattern matching (GVSPM)
method. The GVSPM method is an iterative solver for ill-posed
linear system matrix, e.g., having a rectangular or singular
matrix [2]. The key idea of the GVSPM is that the objective
function is the angle obtained by means of the inner product
between the input vector and solution of a system of equa-
tions. It has been successfully used for some applications,
for example, current vector estimation from the locally mea-
sured magnetic field in cases of two-dimensional (2-D) and
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quasi-three-dimensional (quasi-3-D) problems [2]–[5]. In this
paper, the system matrix to be solved is constructed with
normalized sensitivity matrix method [6] combining finite
volume method (FVM) for the EIT forward problem [7].

II. GVSPM

Solving the inverse problems results in handling the ill-posed
linear system of equations. The basic equation we have to solve
is as follows:

(1)

where and denote the th-order input and th-order solu-
tion/output vectors, respectively, andis an by rectangular
matrix. Equation (1) can be rewritten as

(2)

Equation (2) means that the input vector is represented
by means of a linear combination of column vectors,

, in the system matrix .
EIT is in essence to be reduced into solving the ill-posed

system of (1). Therein, and are the measured surface
voltage vector with order and solution vector of conductivity
changes with order , respectively, and is an by
rectangular matrix, i.e., the sensitivity matrix in this paper.

A. Objective Function

Normalizing (2) by vector 2-norm gives the following
relationship:

or (3)

where the prime () denotes the normalized quantities.
Equation (3) means that the normalized input vectoris

obtained as a linear combination of the weighted solutions
, , with the normalized column

vectors , . It should be noted that the
solution could be obtained when the inner product between

and becomes 1. This is the key idea of the GVSPM
to construct the objective function derived from the angle
between the normalized input vector and output system of

0018-9464/03$17.00 © 2003 IEEE



DONG et al.: GVSPM FOR RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY 1631

equations. When the objective function (4) reaches 1, the
solution vector can be obtained as

(4)

B. Iteration Algorithm

Let be an initial solution vector given by

(5)

Then, the first deviation vector is obtained as

(6)

When the deviation becomes a zero vector, the objective
function (4) is automatically satisfied. Modification by the devi-
ation vector gives the th iterative solution vector ,
namely,

(7)

where denotes an by unit matrix.

C. Convergence Condition

The convergence condition of the GVSPM iterative strategy
is that the modulus of all characteristic values of the state tran-
sition matrix in (7) must be less than 1 [2]. The state transition
matrix is given by

(8)

Since the vector is normalized, (8) can be rewritten as

(9)

Let be the characteristic value of the state transition matrix.
Then the determinant of symmetrical matrix is obtained as

(10)

It is obvious that the modulus of off-diagonal elements in
(10) is less than 1 because of the normalized column vectors
of matrix , namely,

(11)

Suppose that the modulus characteristic valueis more than
1; then the column vectors in (10) become linearly independent
because of (11). In such a case, the determinant in (10) is not
zero so that the condition should be satisfied. Therefore,
it is proven that the GVSPM is always carried out on stable
iteration.

III. EIT RECONSTUCTION

A. Construction of a System Matrix

The construction of a system matrix is based on the normal-
ized sensitivity matrix method [6] by combining FVM for the
EIT forward problem [7], instead of the commonly used numer-
ical method, the finite element method (FEM).

1) FVM for the EIT Forward Problem:The key idea of FVM
is based on the current flow conservation law which satisfies
the current continuity condition for current fields, i.e., the sur-
face integral of the potential gradient in the presence of current
sources in a control volume with boundary surface is given
by the Gauss theorem

(12)

where , , and are the conductivity, potential, and cur-
rent volume source density in the control volume, respectively.
In EIT, there is no current volume source assumed in the
bounded region. Thereby, (12) reduces to

(13)

The boundary conditions are given in

at the points where current is injected
through the boundary
at the other points on

where is the outward facing normal component of the current
density.

Two kinds of mesh systems are needed for FVM which is
the discretization of integral equation. For the 2-D case, the
target region is divided into a large number of triangular ele-
ments which are called primary cells in FVM. In addition, com-
plementary cells are also constructed by enclosing each of the
nodes in order to calculate the current flow across each integra-
tion surface. The discretized equation is written as

(14)

The detailed description for the discretization is introduced in
[7].

2) Construction of a System Matrix:The normalized
sensitivity matrix method [6] is employed to construct the
system matrix for reconstructing the normalized changes of
conductivity in each element. The sensitivity matrix and
each individual boundary voltage measurement vectorare
normalized as and in order to prevent its instability
from measurement errors in practice. Therefore, the system
matrix is the normalized sensitivity matrix which describes
the normalized linear sensitivity relationship between normal-
ized changes in the boundary voltages and normalized
conductivity changes in each element , as follows:

(15)
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Fig. 1. Results for a single perturbation with conductivity change of 30%
located 44 mm from the center of the circle. (a) Original conductivity
distribution. (b) GVSPM result. (c) Pseudo-inverse result with truncation to 62
singular values. (d) Pseudo-inverse result with truncation to 78 singular values.

The simulated data are constructed by subtracting
the voltage boundary vector generated in uniform conductivity
distribution from that generated in nonuniform conductivity
distribution, instead of by multiplying a vector of conductivity
changes by sensitivity matrix [8], so that the “inverse
sin” problem is avoided.

B. Reconstruction Results

The physical model is a circle with a radius of 92 mm. A fine
triangle mesh system containing 596 nodes and 1110 elements
is shown in Fig. 1(a). The 96 measurement pairs are carried
out with the opposite-adjacent measurement pattern. In this sec-
tion, reconstructed images by both GVSPM and pseudo-inverse
methods of system matrix are shown for comparison. Herein, the
pseudo-inverse is carried out by the PINV routine in Matlab6.1
with the truncation level being set to 62 singular values. The
truncation occurs at a value of about 0.03% relative to the max-
imum singular value of the system matrix.

1) Performance for a Single Perturbation:In this case, con-
ductivity changes of 30% are defined in a small region con-
taining six elements with the radius of about 6 mm, moving from
the boundary to the center of the circle. Fig. 1 shows the original
and calculated conductivity distribution when the perturbation
is located 44 mm from the center of the circle.

For the case of a single perturbation, an image with high
resolution and low localization error has been reconstructed in
pseudo-inverse manner by using the pseudo-inverse routine of
default tolerance, corresponding to the truncated level being set
to 78 singular values of this system matrix, as shown in Fig. 1(d).
However, the deficient side is that a pseudo image will also be
produced symmetrically to the center against the image of the
real perturbation. This will generate confusion with some other
situations like the second case for two perturbations below, with
two opposite conductivity changes of30%. Even though the
problem is improved by setting the truncated level to 62 singular
values, shown in Fig. 1(c), comparing with the GVSPM result
shown in Fig. 1(b), we can see that the image reconstructed by
GVSPM performs more smoothly and more reliably. The lo-
calization error is within 2.5 mm when the distance between
the perturbation and the center of the circle is over 30 mm. Be-
cause, for most of cases, more stable solutions can be obtained
at the truncated level of 62 singular values than at 78 singular
values for this system matrix, only the results reconstructed by
pseudo-inverse at this truncation level to 62 singular values are
shown and compared with the results by GVSPM in the fol-
lowing.

Fig. 2. The comparison with the perturbation located 5 mm from the center of
the circle. (a) Original conductivity distribution. (b) GVSPM result. (c) Pseudo-
inverse result.

Fig. 3. Results with the two same conductivity changes of 30%, moving toward
the center of the circle. (a) Original conductivity distribution. (b) GVSPM
results. (c) Pseudo-inverse results.

With the perturbation moving toward the center within
10 mm, the image by GVSPM performs worse as well as that
by the pseudo-inverse, shown in Fig. 2.

2) Distinguishability With Two Perturbations:Two cases
are used in this session to check the distinguishability with two
perturbations. In the first case, there are two small regions with
the radii of about 6 mm symmetrical to the center of the circle,
having the same conductivity changes of 30%. They are moved
toward the center gradually along the diametral direction of the
circle. In the second case, the opposite conductivity changes
of 30 are defined in the two small regions and moved the
same way as the first case.

For the former case shown in Fig. 3, the images obtained by
both GVSPM and the pseudo-inverse methods perform better
toward the edge and worse toward the center. When their centers
are less than 20 mm from the center of circle, respectively, the
images are too blurred to distinguish them. However, for the
latter case, shown in Fig. 4, the images obtained by two methods
are of high resolution which is sufficient to be distinguishable,
even when their centers are 10 mm from the center of the circle,
respectively, as shown in the second row of Fig. 4.

Furthermore, comparing the results between GVSPM and
pseudo-inverse methods, we can see that the qualities of
reconstructed images by GVSPM are higher than those by
the pseudo-inverse method. The images of perturbations are
more shrunk and of less location errors, and the background is
smoother.

3) Performance of Sensitivity:In order to know the sensi-
tivity of conductivity changes, two perturbations with opposite
conductivity changes of 1 are defined in two regions with
radii of about 6 mm, shown in Fig. 5(a). By combining FVM
for the EIT forward problem with the normalized sensitivity ma-
trix method for EIT reconstruction, images of relatively higher
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Fig. 4. Results with two opposite conductivity changes of 30%, moving toward
the center of the circle. (a) Original conductivity distribution. (b) GVSPM
results. (c) Pseudo-inverse results.

Fig. 5. The result with a change as small as 1%. (a) Original conductivity
distribution. (b) GVSPM result. (c) Pseudo-inverse result.

Fig. 6. The result with four perturbations. (a) Original conductivity distri-
bution. (b) GVSPM result. (c) Pseudo-inverse result.

quality can be achieved by both GVSPM and pseudo-inverse
methods, shown in Fig. 5(b) and (c), respectively.

Finally, we would like to show an example with four pertur-
bations (see Fig. 6). Conductivity changes of30 are defined
in two regions located upside and downside of the circle, and
the other two perturbations with conductivity changes of 30%
are defined in two regions located at the left and right sides of
the circle, respectively. Compared with the reconstructed image
by the pseudo-inverse method, the image by GVSPM method is
of more reasonable accuracy with higher resolution.

IV. CONCLUSION

We have succeeded in EIT reconstruction using the GVSPM
method. Through comparison of the reconstructed images by
GVSPM with those using the pseudo-inverse method, we know
that the GVSPM images are of higher quality, i.e., the image
of perturbation is more shrunk, has a higher resolution, and
has less localization error. The background is reconstructed
more smoothly which is useful for eliminating the confusion.
A change as small as 1% can be distinguished by the GVSPM
method as well.

However, one deficient side of GVSPM versus the pseudo-
inverse method is that a longer computation time is needed for
reconstructing the image. For this system matrix with 96 rows
and 1110 columns, it takes about 8 min to make a cosine of the
angle between the input vector and the vector of solution reach
to 0.999 99, with 1.4 GHz CPU and 1.5 Gbyte RAM.

As a result, GVSPM is a powerful iterative solver for any
ill-posed linear system equations. It enables us to obtain reliable
and stable solutions for EIT reconstruction and should be used
in practice with experimental data in the near future.
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