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The fundamental equations of polyphase induction motors (linear simultaneous differential equations with periodic

’) coefficients) are directly solved by finite difference methods for balanced and for unbalanced conditions.
Notation
A | = parameter in approximate exponential function
cC = current connection matrix
Glt, w,,] =(l/w,, )(d/dr)L f, w, ], torque matrix
I[z‘] = {iys s Loy igs Tes Up) s current vector
I'¢] = {i,, 12, i3, I4}, new coordinate current vector
Lit, w,,] | =1+ L +M[{, w, ], inductance matrix
I — . . . .
L;; cos 3 J 21T) = element in i-th row and j-th column of self-inductance matrix L'’
L’ = self—inductance matrix

/ = [y by 1oy U5 1,5 1], leakage inductance matrix (diagonal)

Mlt, w, | = mutual mductance matrix

M.. cos (o.) t + 3 —J 27r) = element in i-th row and j-th column of mutual inductance matrix
Mlt, w, ]

p = number of pole pairs

R = |Fgs Tp> Fos Fgs o, 7], TeSIStance matrix (diagonal)

Slt, w,,] =L 1'[t, w,] (R+w, Glt, w,]), coefficient matrix of the differential
state equation

3 =(w — w,))/w, slip

T = torque (N—m)

t = time (sec)

At = stepwidth (sec)

Vir] = {v,, Uy, U, Uy, U,; Us}, voltage vector |

Zlt, w, | =R+ w, G[t,w, ]+ L[t w,] (d/dt), impedance matrix

W = impressed voltage source angular velocity (rad/sec)

W, = mechanical angular velocity transformed into electrical angular

velocity (rad/sec)
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Subscripts a, b, ¢ refer to stator branch quantities, d, e, f reter to rotor branch quantities , i and j
refer respectively to the row and column in an inductance matrix. |

1. Introduction

Among all types of alternating current motors the one of induction type is by far the most
popular and is used very widely. It is quite often designed for use on a polyphase circuit (usually
three-phase) over the whole horsepower range. A polyphase induction motor has many excellent
characteristics, such as the simpleness of its structure, its inherent self-starting character and the
high reliability in its behavior. This machine is equipped with both a primary winding (usually
stator) and a secondary winding (usually rotor) as shown in fig. 1. In normal use an energy source
is connected to one winding alone, the primary winding. |

Currents are made to flow in the secondary winding by induction, thereby creating an ampere-
conductor distribution that interacts with the primary magnetic field distribution and produces
a unidirectional torque. |

At the starting time (or when controlled by semiconductor elements) we choose certain com-
binations of stator voltages, stator resistances and rotor resistances. By these choices we classity |

The relationships are

described by inductance

matrix L [t,qvﬁ]_

Fig. 1. Circuit diagram of the three-phase induction motor.

b
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two cases — “balanced conditions” and “unbalanced conditions” — which are explained in detail
in the Appendix. -

In the many theoretical studies (e.g. [1] —{9]) which have been made for transient and steady
states in polyphase induction motors it has been conventional to use very complex and tedious
tensor transformations. In this paper we avoid these transformations by directly employing numer-
ical methods to solve the fundamental equations of the three-phase induction motor for balanced
and unbalanced conditions. The results are compared with those of conventional tensor transfor-
mation methods and also with experimental results.

2. Fundamental equations

The circuit diagram of the three-phase induction motor is shown in fig. 1 and is composed of
six main branches, three stator and three rotor. |

The set of Kirchhoff’s equations for the circuit system consists of six simultaneous differential
equations and is preferably expressed as a matrix equation between a voltage vector V[#] and a
current vector Il¢7]. The first three components of V[#] —v,,v,, v, — are the impressed voltages
of the stator branches, while the remaining three — v, v,, v, — ure those of the rotor branches.
The components of I[¢] are similarly indexed. With Z[¢#, w, ] denoting the impedance matrix,
the fundamental equation is given as

Viel = ZIt, w ] 11t] ' (1)

where the quantity w,, is the mechanical angular velocity.
The torque 7T of the motor is given in terms of the number of pole pairs p, the current matrix
Ilt] and the torque matrix G[¢, w,,] (whose meaning will be given later):

T=(p/2)I'[t] G[t, w, 11t] . ' (2)

The impedance matrix Z[¢, w,,| 1s given in terms of three matrices — the resistance matrix R,
the torque matrix G{¢, w, | and the inductance matrix L[¢, w,,]:

Zlt, w,l| =R+ w, G[t, w,,] + L[f, w,,](d/dt). - (3)

The resistance matrix R is a diagonal matrix. The first three diagonal elements — r,, r,, », — are
the resistances of the three stator branches, while the remaining three —r,, r,, - — are those of
the rotor branches.

The inductance matrix is
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Lit,w, 1=1+L +M[f, w,]

l,+Ly; Ly,cos(2n/3) L, jcos(4n/3) M 4 cos(w 1) M, cos(w,, t+2m/3) M16€05(wmt+4ﬂ/3)

Ip+L .y, L,scos(2r/3) My cos (wpt — 21(3) M5 cOs(w,f) M o cos(w,, f+2n/3)

l.+L 4 Mg, cos(wmt —4m[3) My cos(w,,t —2n/3) M 5, cos{w,, 1)

_ , (4)
Ly+L g, L e cos(2n/3) Lyscos(4n/3)
SYMMETRICAL le-‘i-LSS L56 cos (2n/3)
| ! +L66
= ' | / o

where / is the leakage inductance matrix, L' is the self-inductance matrix and M[¢, w,, | is the
mutual inductance matrix; also the L,;; and M;; are (ordinary) self-inductance and mutual induc-
tance coefficients, respectively.

The torque matrix G[7, w,,] is defined as

Glt, w, ] =/w,)(d/d) L[t w,] . ~ (5)

In order to solve eq. (1), it is necessary to take the following facts into consideration. When
balanced conditions are satisfied, the last three (rotor) components of the voltage vector V|7] are
always zero, viz. v; = v, = U = 0, where the first three (stator) components satisfy the relation
v, +v, tv, =0, as shown in the Appendix.

Also, when balanced conditions are satisfied or the stator components and the rotor components
of the current vector I[¢] satisty respective the relations i, +i, +i,=0and i, +i, +i.= 0.

Since the mechanical angular velocity w,, is smaller than, or at most equal to, the angular veloc-
ity w of the stator impressed voltage in the actual operation of the three-phase induction motor
without space harmonics [10], the time variations of the matrix elements in the inductance
matrix L[/. w, ] are slow and at most equal to the time variations of the stator impressed voltages.

Therefore, we assume that the elements in L{#, w, | take constant values in the time interval
from ¢ to t + Af. Thus, the fundamental equations of the three-phase induction motor reduce to
linear simultaneous differential equations with constant coefficeints during the interval from ¢ to
{ + At.

Now that eq. (1) can be taken as a system of linear simultaneous differential equations with
constant coefficients, the difference method is applicable to solving it numerically.

By considering eq. (3), eq. (1) can be rewritten as

(d/d)It] = —S[t, w, 1I[t] + L7t w, 1 VIt] (6)
where

Slt, w, 1=L 't w, |[(R+w, Glt,w,]). (7)
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With the coefficients evaluated at ¢ + A¢, the integral of eq. (6) from ¢ to r + At is
I[t + At] = exp (— ArS[t + At, w,, | ) I[1]
+ I, —exp(—AtS[t + At, w,, 1)} {R+w,  Glt.+ At, w, 1} V[t + Ar] , (8)

where I, denotes the unit matrix of order 6. This is used as a finite d1fference equation to solve eq.
(6), w1th the exponential function approximated by

exp (—AS[1 + AL, 0, 1) = {1, + A AS[t + At, 0,1} I (1 — A) AtS[2 + At w1} . (9)

Particular values of the parameter 4 yield the forward difference method (4 = 0) the central dif-
ference method (A4 = 0.5), and the backward difference method (4 = 1) (see e.g. [11, ch. 8]). In
this paper, practical computations are carried out with 4 = 0.5 and compared with results com-
puted with other values of 4 as discussed in section 3.

Eq. (1) is directly solved by the numerical method for balanced conditions because no currents
flow in the neutral line if the neutral is connected. However, the six relationships implied in
eq. (1) are excessive for the majority of situations, and it.is desirable to reduce the number of
independent variables. Since we are dealing with star-connected machines with no neutral line

as shown in fig. 1, the currents i, and i, can be eliminated by use of the relationship (see Appen-
dix)

i 1 0 0 O
iy 0 1 0 0]/
i, -1 -1 0 0 /i
I[t] =CI'[t], ie. = _., (10)
I 0O 0 1 01}
i, 0O 0 0 1 3
RN 0O 0 -1 —-—1_

where I' [#] is the new current vector, and C is called the current connection matrix. Eqgs. (1) and
(2) are then transformed to

CV{t] =C'Z[t, w,,] CI'[t] ,
T=(p/2)I''t] C*'Glt, w,] CI'[t] . (1D

The transient and steady state characteristics of the three-phase induction motor for balenced
and unbalanced conditions are computed by eq. (11), using the procedures of eq. (8) and eq. (9).
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3. Numerical solutions

The various constants of a motor used in calculation are listed in table 1 for balanced conditions,
in table 2 for unbalanced conditions, and the constants of the actual experimented motor are
listed in table 3.

Table 1
Various constants of the calculated motor for balanced conditions
w = 100n (rad/sec) |
| v, =+/2/3 200 sin (wr) (v)
Voltages vy, =+/2/3 200 sin(wt — 2n/3) (v)
v, =~/2/3 200 sin (wt — 4n/3) (v)
vd=u€=vf=0 - | (v)
Initial currents are all zero
Stepwidth Ar = 0.00005 (sec)
Number of pole pairs p = 2
Resistances CARCARCE b1 | ()
rg=re=rp=1.25 (£2)
Lll=L22=L33=L12=L13=L23=0.11466 (H)
Lys=Les=Lge=Las=Lse=Lgs=0.11466 (H)
Inductances M =Mc=M =M, =M,s=0.109 (H)
Myo=Msy =My =My, = 0.109 (H)
L=ly=1l.=13=1,= lf= 0.00533 (H)
Table 2

Various constants of the calculated motor for unbalanced conditions

(a) Unbalanced stator Ug =V 2/3 200 sin (wt), vy = v, =0 (V)
impressed voltage The other constants are the same as in table 1
(b) Unbalanced stator ry >10.0 (£2)
resistance | The other constants are the same as in table 1
. f
(c) Unbalanced rotor - rg=10.0 (2)
resistance The other constants are the same as in table 1

For the comparison, we solve numerically the simultaneous differential equations linearized by
the conventional tensor transformation methods [4] —[9] by using the backward difference method,
central difference method and forward difference method. Among the results obtained by each |
method, there are only small differences. These results also agree fairly well with our numerical
solutions of eq. (1) or eq. (11) for balanced conditions computed by the central ditference method.
Rigorous analytical solutions are obtained for balanced conditions by the conventional revolving
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Table 3
Various constants of the experimented motor for balanced and unbalanced conditions

w=100m (rad/sec)
v, = ~/2/3 200 sin (i) (v)
Voltages v = \/§7§ 200 sin (wt — 27/3) (V)
v, =~/2/3 200 sin (wt — 47/3) (v)
ud=u€=Uf:0 | (v)
Stepwidth Af = 0.00005 (sec)
Nufnber of pole pairs p = 2
Resistances COC AN 10833 )
rd=r6=rf=1.0 (Q2)
Lyy=Lyy=L33=Lyy=L3=1,3=0245 (H)
Lya=Los=Lgg=Lys=Lag=Lse=0.0369 (H)
uctances Mya=Mc=M =M, =M,5=0.0952 (H)
Myo=Myy=M;ys = Mzg=0.0952 (H)
l,=1y=1,=0.02119 (H)
lg=1,= Zf= 0.003194 (H)
Unbalanced stator resistance g = 30.835 (£2)

The other constants are the same as in the above table

field theory [4] —[9]. Numerical solutions by our method reproduce these rigorous solutions with-
in discrepancies of a few percent.

The numerical solutions or eq. (1) or eq. (11) for balanced conditions computed by the back-
ward difference method were somewhat small compared with the results obtained by the central
difference method. On the contrary, the forward difference method yielded larger results. There-
fore, we adopted the central difference method for the digital simulation of a polyphase induction
motor. '

Some examples of numerical solutions of eq. (11) for balanced conditions computed by the
central difference method are shown in fig. 2. The steady state numerical solutions of eq.(11) for
balanced conditions computed by the central difference method are shown together with the
above mentioned rigorous solutions in fig. 3. Some examples of numerical solutions of eq. (11)
for unbalanced conditions computed by the central difference method are shown in fig. 4, and
the comparisons of the steady state experimental and computational results are shown in fig. 5.

4. Conclusion

One of the merits of our direct integral method is that mathematical treatments are common
both for balanced conditions and for any unbalanced conditions, while the conventional tensor
transformations are confronted with serious difficulties in obtaining a linearized model for un-
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Fig. 3. Numerical examples of the steady state characteristics compared with the values that are computed by the conventional

revolving field theory (each stator current Lys Ips I and rotor current 4, Ios z'f represented by the root mean square value are the
same values respectively). '

balanced conditions. So the method proposed here 1s not only useful for the analysis of the poly-
phase induction motor, but may be applicable to any other alternating current machines.

The algorithm is so simple that a computer program of our direct integration method can be
easily written down directly from the fundamental differential equations without any other
manual work and can be used for any unbalanced conditions. Thus a program of considerable
generality is obtained with little programming effort.

If the relevant stepwidth At is chosen, then the numerical solutions obtained by our direct
integration method have enough accuracy for engineering problems. In this paper, sufficiently
accurate solutions are obtained by the selection ot a stepwidth A¢ which is sufficiently small to
obtain the correct wave forms of the stator impressed voltages.

Finally, we have recently proposed a quite effective digital simulation method of polyphase
nduction motors. We wish to apply the direct integration method to the problem of a polyphase
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induction motor supplied with nonsinusoidal waves as the stator impressed voltage. One of the
authors (Saito) now intends to apply the method to the polyphase induction motor with space
harmonics [10].
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Appendix: Balanced and unbalanced conditions

[f the conditions that the stator impressed voltagesv,, v,, v, have the same amplitude, same
angular velocity and relative phase difference 2m/3 (in the case of three-phase voltage) are satisfied,
then such a case is called “balanced stator impressed voltage™. The case in which one or more of
these conditions are not satisfied is called ““‘unbalanced stator impressed voltage™.

I the conditions shown in table 4 are satisfied, then such a case is called ““balanced impedance”.
The case in which one or more of these conditions are not satisfied is called “unbalanced impe-
dance”. In particular, if the stator (rotor) resistances are not all the same, then such a case is called
“unbalanced stator (rotor) resistance’ respectively.

Table 4
stator rotor
resistances y, = Vp =V, Vg = Ve = Uf
leakage inductances L=l =1, lg=1,= ’f
self-inductances Liy=Ly;=..=L34, Lpa,Ligs=...= L,
Mutual inductances M=M= =M,

In general, if the conditions of balanced stator impressed voltage and balanced impedance are
satisfied, then such a case is called “balanced conditions’. The case in which one or more of these
conditions of balanced stator impressed voltage and balanced impedance are not satisfied, then

such a case is called ““‘unbalanced conditions™.
In balanced conditions, from the conditions of balanced stator impressed voltage, the following

relationship is established:
v, tv, +v,=0. (A.1)

The examples of eq. (A.1) are shown in table 1 and table 3, and from the conditions of balanced
impedance (e.g. see table 1) the following relationships are established:
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i +i, +i, =0, ' (A.2)
iy ti, +i,=0. ' ' (A3)
The examples which satisfy eqgs. (A.2) and (A.3) are as follows:
i, =1, sin(wt —h),
i, =1 sin(wt —h — 27n/3),
i, =1 sin(wt—h —4m/3),
i, =1, sin(swt — k),
i, =1, sin(swt —k — 2m/3),
i, =1, sin (swt — k — 47/3),

where [, I, h and k are constants.

Therefore in balanced conditions, if the neutral line 1s connected or disconnected, the same
numerical solutions can be obtained from eq. (1) (which is written as it were equipped with the
neutral line) in section 2.

In unbalanced conditions, especially in unbalanced stator impressed voltage, the relationship
(A.1) is not established, and if the neutral line is disconnected (star-connected machine as shown
in fig. 1), then the previosuly described relationships (A.2) and (A.3) must be established.

Then, in unbalanced conditions, the relationships (A.2) and (A.3) must be introduced in the
fundamental equations described by eq. (1) in section 2. Therefore, an arbitrary one of the in-
dependent variables of eq. (A.2) and eq. (A.3) is represented by the remaining terms of eq. (A.2)
and eq. (A.3) respectively, and their relationships are described by the current connection matrix
C [in this paper, current i, in eq. (A.2) and current i, in eq. (A.3) are represented by the remaining
currents in eq. (A.2) and eq. (A.3) respectively, as described by eq. (10) and eq. (11) in section 2],
which is introduced to the fundamental equations and torque equation as described by the proce-
dures of eq. (11).

However, if the neutral line is connected, then the relationships (A.2) and (A.3) are not satisfied,
in this case, numerical solutions are obtained by the eq. (1) in section 2 without any transforma-
tions [eq. (11) in section 2].
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