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Faster Eddy Current Computation
Using Voronoi-Delaunay
Transformation

Y. SAITO, S. IKEGUCHI and S. HAYANO

College of Engineering, Hosei University,
3-7-2 Kajinocho Koganei, Tokyo 184, Japan

ABSTRACT

Previously, we have proposed a locally orthogonal discretization method
based on a Voronoi-Delaunay diagram for calculating the electromagnetic
fields in a most efficient manner (Saito et al., 1986, 1988, 1989). This
locally orthogonal discretization method has been compeled to solve the
two-independent systems (Voronoi and Delaunay). However,in this paper, we
exploit the Voronoi-Delaunay transformation method that the solution of
Delaunay system can be obtained by transforming the solution of Voronoi
system. This Voronoi-Delaunay transformation method is now applied to
the transient eddy current problems. As a result, it is found that the
eddy current problems can be solved by means of the Voronoi-Delaunay
transformation in an extremely efficient manner.
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INTRODUCTION

In order to evaluate the electromagnetic fields in a most efficient
manner, a geometrical duality between the Delaunay triangles and associ-
ated Voronoi polygons has been utilized to implement a dual energy finite
element approach (Saito et al., 1986, 1988, 1989). This method requires
the use of a single potential to establish the upper and lower bounds of
solutions, whereas the traditional dual energy finite element approach
requires the use of two different types of potentials (vector and scalar)
(Penman et al., 1982, Hammond et al., 1976, 1983). Therefore it is obvi-
ous that this method is able to provide the improved functional as well
as improved local solution, while the traditional dual energy method is
possible to provide only the improved functional. Even if a single type
of potential is required to implement the dual energy approach, this
method has been compeled to solve the two-independent systems{Voronoi and
Delaunay).

In this paper, we exploit the Voronoi-Delaunay transformation method that
the solution of Delaunay system can be obtained by transforming the
solution of Voronoi system. This means that only the Voronoi system of
equations has to be solved to implement the dual energy approach. This
Voronoi-Delaunay transformation method is now applied to the transient
eddy current problems. As a result, it is found that the eddy current
problems can be solved by means of the Voronoi-Delaunay transformation in
an extremely efficient manner.

VORONOI-DELAUNAY TRANSFORMETION METHOD

Basic _field equation

In two dimensional x-y plane, most of the eddy current problems is
reduced to solve a following equation

l..gfl% J;.%fl%.- 2A_ _
u x+p y i I Js , (1)

wvhere A, J. , # and ¢ are the z-component of vector potential, source
current density, permeability and conductivity, respectively. The vector
potential A is related with the flux density B by
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VUXA=B , (2)
so that the electric field intensity E is given by

E=-ve¢- 4 . (3)

The scalar potential ¢ and time derivative term in (3) are respectively
related vwith the source current density Js and eddy current density J .
as

Js ==aV¢ ’ (4)
Je=a (3A/0t) . (5)

Yoronoi-Delaunay diagranm

Delaunay triangulation of arbitrary set of points is constructed by
considering the properties of its geometrical dual i.e., the set of
Yoronoi polygons. Delaunay triangles are related to Voronoi polygons in
that the circumcenters of Delaunay triangles are the vertices of the
Yoronoi polygons. Figure | shows the triangles in Delaunay mesh, and the
Yoronoi polygons associated with these Delaunay triangles are shown by
dashed lines.

® Nodes of Delaunay
systea

O Nodes of Voronoi
systen

Fig.1.Voronoi-Delaunay diagram and a locally orthogonal
coordinate system.



274 Y. Saito, S. lkeguchi and S. Hayano

Locally orthogonal form

By considering Fig.l, it 1is obvious that the Delaunay triangles and -
Voronoi polygons are locally orthogonal : each triangle side is perpen-
dicular to the corresponding Voronoi polygon edge. VWhen we select a set
of nodal variables A;, Aj;, Ax, A,, then a following interpolating
function may be assumed :

A=aotai1x+azy+taaxy . (6)

However, it is difficult to represent the coefficients ao, a1, az, aa
in terms of the nodal variables A;, A;, Ax, A,, uniquely. This means
that two complete but independent sets of nodal variables must be
defined : one is located at the vertices of the Delaunay triangles ; and
the other is located at the vertices of the Voronoi polygons. A simple
Lagrange interpolation between the nodes i and j in Fig.l yields a trial
function for the Delaunay system as

A=(1/2)(A1+Ad)+(Ai_As)(y/a) ’ (7)

where a is the distance between the nodes i and j (Saito et al., 1986,
1988, 1989). When we assume that each of the Delaunay triangles takes a
distinct permeability u, then a flux density B, [Fd A/3 y] mnust be
continuous to both regions 1 and 2 in Fig.l. Equation (7) satisfies this
boundary condition automatically. On the other side, a field intensity
H, [=-(1/#)3@ A/3 x] must be common to both regions 1 and 2 in Fig.l.
This boundary condition can be satisfied by the following interporating
functions between the nodes k and 1 in Fig.l :

A={(Ax/p1b)+(A/p2c)+(A1-A)x/(psbc))
/{(1/p:b)+(1/pzc)), —b=xS0 , (8a)

A={(A/p1b)+(A/pzc)+ (A=A x/(r1bc))
/{(1/pib)+(/p2c)), O0=2x=c , {(8b)

vhere the distances b and ¢ are shown in Fig.l (Saito et al., 1986,
1988, 1989).

According to these two independent interpolating functions (7) and (8a)
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or (8b), the governing equation (1) may be reduced to a one-dimensional
equation in either the Delaunay or in the Voronoi sets of variables :

DN TR (o)
T Einial Ch y IR (10)

Functionals and nodal equations

A functional which automatically satisfies the B, [0 A/d y ] condition
between the adjacent Delaunay triangles is given by

FA)=/{(1/p)(0A/0y)2+[c (0 A/D t)-Ts]A)dxdy . (11)

After substituting Eq.(7) into Eq.(l11) and integrating over the region
enclosed by i-k-j-1 in Fig.l, we can obtain the functional F (A) for the
Delaunay system. By taking an extremum of this functional F (A), a nodal
equation for the node i in Fig.l can be obtained as

(L= b+l (4, -ay) +§q§bol +cas)
X+ (TA, +5A,) =% (bJ, +cJ,) . (12)

Entire Delaunay system of equations is represented by

Dpdp+ En(d/dt)cbo=FD y (13)
vhere Do , Ep are the coefficient matrices corresponding to the first
and second terms on the left of Eq.(12) ; Fp is an input source current

vector corresponding to the right of Eq.(12) ; and ®p is the potential
vector of Delaunay system, respectively.

On the other side, a functional which satisfied the H, [=-(1/x)d A
/0 x] condition between the adjacent Delaunay triangles is given by

G(A)=-f{n(1/u)(dA/aX)2+[a (I A/dt)-J A }dxdy . (14)
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vhere " refers to the prescribled values.

After substituting Eqs.(8a) and (8b) into Eq.{l14) and integrating over
the region enclosing by i-k~j-1 in Fig.l, we can obtain the functional
G (A) for the Voronoi system. By taking an extremum of this functional
G (A), a nodal equation for the node k in Fig.l can obtained as

[1/ (k2 240:9) WA Ay ) +2520, G,

=307, . (15)

Entire Voronoi system of equations is represented by
Dv®v+ Ev(d/dt)dv=Fv , (16)

vhere Dv, Ev are the coefficient matrices corresponding to the first
and second terms on the left of Eq.(15) ; Fv is an input source current
vector corresponding to the right term of Eq.{(15) ; and ®v is the
potential vector of Voronoi system, respectively. :

VYoronoi-Delaunay Transformation

The Voronoi system of equations has been derived satisfying with two
boundary condition of tangential field intensity H. between two adjacent
Delaunay triangles. However, as shown in Fig.2(a), it is obvious that
the normal components flux density B, to the edges of Delaunay triangle
are included in the entires solution of Voronoi system. The nodal varia-
bles which satisfy the boundary condition of normal flux density B, are
essentially located at the vertices of Delaunay triangle. A governing
equation which must be satisfied by these nodal variables is given by

d JdA_ 3 1 A _
ax(%)ax"'ay(/x)giy_o' an

where the current densities Js and J.o in Eq.(1) have been lumped to the
vertices of Voronoi polygons. Hence, by means of the Delaunay discreti-
zation (12), the vector potential A, in Fig.2(b) can be represented in
terms of the vector potentials of Voronoi system as
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(17 )ycotar+ (17 puz)cot B2lAi+[(1/ u2)cotas
+(1/uns)cot BaJA1a+[(1/ns)cotas+ (1/ p4)cot BalAu,

+[(1/pa)cotas+ (1/us)cot BsJAar+[(1/ns)cotas

+ (1/n 1)cot B x]A“=[}:il(l/.u s)(cotas+cotBi)]A, (18)

k]

vhere the angles a«,~as, B, ~ Bs are shown in Fig.2(b) ; and A\,
Ain, Anas Agr, Axe are the potential at the intersected points of
Yoronoi polygon and Delaunay triangle edges in Fig.2(b). For example

A is

Fig.2. (a) The normal component of flux density B,
and tangential component of fielg intensity H..
(b) Transformation from the Voronoi nodal vari-
ables to Delaunay nodal variables.
(c) Location of the mid point potential A..
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Aun={(c/u)A+(b/p2)A]/[(c/p1)+(b/r2)]. (19)

Thus, by means of Eq.(19), the potential vector ®p, of the Delaunay
system can be represented in terms of the connection matrix C and the
potential vector @y as

$p =CPv . (20)

By means of Eq.(20), the Delaunay system of equations (13) is transformed
into the Voronoi system by

C™DpCov+ CTEpC (d/dt)dv=CTF, , (21)

vhere a superscript T refers to the transposed matrices. Thereby, a
total Voronoi system of equation becomes

D¢v+E(d/dt)¢v=F, (22)

vhere
D=(1/2)[CTDDC+DV] y (233)
E=0/2)[CTExC+E.], (23b)
F=(1/2)[CTFs+F.] . (23c)

A coefficient (1/2) in Egs.(23a)-(23c) is required because a simple
summation of Eqs.(16) and (20) duplicaties the input source current
vector. Each of the transient solution vector ®p, ®v in Egs.(13) and
(16) exhibits a different behaiviour depending on their system eigen-
values, but the solution vector ®v in Eq.(22) exhibits their averaged
behaiviour. This means that a promising transient responce of Eq.(1) may
be computed by Eq.(22) even if a small number of nodes is employed.
Further improvement of the solutions is possible when we consider the
potentials located at the mid points between the vertices of Voronoi
polygon and Delaunay triangle. The mid point potential vector ®wu can be
represented in terms of the vectors ®v and ®p as

Ou=Cou®p+ Cuwdv , : (24)

vhere Cpu, Cvu are the interpolating matrices between the vertices of
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Yoronoi polygon and Delaunay triangle. For example, a mid point potential
A. in Fig.2(c) in given by

An=1/2)A+ (/) A . (25)

By means of Eq.(20), Eq.(24) is reduced into
Pu=(CouC+Cwi)Pv . (26)

The potential vector @y in Eq.(28) is obviously improved in accuracy
because the vector ®x takes into account the boundary condition both of
the tangential field intensity H. and normal flux density B, in
Fig.2(a).

An_example

The method is illustrated by applying to a dynamic magnetic field calcu-
lation of ferromagnetic material with square cross section (Saito et al.,
1986, 1988, 1989). The time discretization of Eq.(21) was carried out by
the conventional trapezoidal method. Various constants used in the
calculations are listed in Table 1. Figures 3(a) and 3(b) show the
transient field distributions computed by the Delaunay (13) and Voronoi
{16) systems, respectively. Figure 3(c) shows the results of computa-
tions obtained by the Voronoi-Delaunay transformation of Egs.(22) and
(26). For comparison, the splution computed by the standard first order
triangular finite element method is also shown 1in these figures, By
considering Figs.3(a)-3(c), it is obvious that our Voronoi-Delaunay
transformation method provides an excellent result even if a small number
of nodes is employed.

TABLE 1. Various constants used in the computations.

Permeability g 2.513[H/m]
Conductivity o 2001/ Q-m]
Step source current density Js 2[4/t ]

Step width in time At 0.001[sec]
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t =0.02(s] t=0.04(s] t =0.06(s]
t =0.08[s] t =0.10[s ] t =e[s]

-+ Voronoi-Delaunay transformation using 9 nodes
FEM using 100 nodes (c)

Fig.3. Transient field distributions computed by (a)
the Delaunay (b) Voronoi (c) Voronoi-Delaunay
transformation methods together with the stan-
dard first order triangular finite element
method.

CONCLUSION

i Previously proposed locally orthogonal discretization method was a quite
effective method to calculate the electromagnetic fields in an efficient
sanner, but it was compeled to solve the two independent systems 1i.e.,
Yoronoi and Delaunay. To overcome this defficiency, we have proposed, in
this paper, the Voronoi-Delaunay transformation method, which requires
only one system of equations to 1implement a dual energy approach. As a
result, it is revealed that the transient eddy current problems can be
solved by our new method in an extremely efficient manner.
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