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We propose a new mathematical model for simulating a-semiconductor device. The model is formulated based on a
discretization method using a Voronoi-Delaunay (VD) diagram. The fact that the VD diagram consists of two mesh
systems. independent but geometrically orthogonal to each other. leads to two completely different sets of formulae. We
apply the method to a conventional MOSFET DC analysis as an initial test example. We found that the new method
provides similar results compared to a conventional one. This confirmed the validity of our new formulation.

1. Introduction

For analyzing semiconductor devices, numeri-
cal techniques are successfully introduced and
implemented [1-3]. In the case of calculating a
two- or three-dimensional problem, space dis-
cretization is very important whether to apply a
finite difference method (FDM) or a finite ele-
ment method (FEM).

Recently, the dual discretization methods
based on the Voronoi-Delaunay diagram have
been effectively employed in the analysis of elec-
tric and/or magnetic fields {4-6]. Basically, these
methods utilize the local orthogonality between
each edge pair, one edge of a Delaunay triangle
and one of a Voronoi polygon, to form a set of
coordinates upon which the formulation is im-
plemented. The boundary condition is different
in the case of using the Delaunay triangle mesh
system to that of using the Voronoi polygon
mesh system.

In a previous paper [7], the Poisson equation
is discretized by both methods for analyzing a
reverse-biased P-N junction. Both solutions so
obtained show good agreement with each other.
In contrast to the previous paper where the
device under investigation is composed of only
one kind of material, the present paper deals
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with a MOSFET which is formed basically of two
different materials with separate permitivities.
namely, silicon(Si) and silicon dioxide(SiO,).
Furthermore, in addition to the Poisson equa-
tion, two current continuity equations, one for
electrons and one for holes, are also considered
in the present case. In other words, in contrast to
the previous case of zero current flow, the pres-
ent case deals with the general situation where a
non-zero current is existent in the device under
consideration. In this paper, the five-point FDM
is applied to both systems. The five nodes for the
Delaunay system include a center node and four
surrounding adjacent nodes. The formulation for
this case is based on a conventional Taylor ex-
pansion. On’the other hands, the five nodes for
the Voronoi system consist of a center node and
four surrounding “‘intermediate” nodes. These
“intermediate” nodes are necessary because of
the existence of an interface between different
materials at the middle of the Voronoi nodes.
The application of these ‘‘intermediate” nodes is
new in the field of the semiconductor device
simulation.

2. Dual discretization method

2.1. Equations to be solved

Generally, in the analysis of semiconductor
DC characteristics, Poisson equation and two
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current continuity equations (for electrons and
holes) are governing equations. The three equa-
tions are written as follows.

Poisson equation:

vy=-2(p-ntn-N. (1)
Current Continuity equations:

(1) Electrons

VI, = -V(qu,iV - qD,Vn)=-q-GR,.  (2)
(2) Holes )

VJ, = -Yqu,pV¥ - qD,Vp)=—q-GR,.  (3)

y. q, &, N and N, in Poisson equation denote
potential, permitivity, electron charge, donor
and acceptor concentrations, respectively. On
the other hand, J, ,, u,,, D,,, GR,  in the
current continuity equations denote current den-
sities, mobilities, diffusion constants, and gener-
ation-recombination rates, respectively. Note
that subscripts n, p refer to electrons and holes,
respectively. Also, p and n are hole and electron
densities which are described as follows.

n=n x| L (6, - ). )

p=niem[kir(w—¢p)], (5)

where n,, k, T are intrinsic carrier concentration,
Boltzmann constant, temperature, ¢, and ¢, are
quasi-Fermi levels for holes and electrons, re-
spectively.

Equations (1)-(5) are numerically solved
using a FDM and Gummel’s algorithm {8].

2.2. Geometrical duality

Figure 1 indicates a part of the discretized
region using a Voronoi—Delaunay diagram. The
problem of how to construct this diagram has
been explained in details elsewhere (for example
[4]) and will not be repeated here. The Delaunay
triangles are shown by solid lines. The Voronoi
polygons associated with these Delaunay tri-
angles are shown by dashed lines. It can be seen
that the Delaunay triangles and the Voronoi
polygons are locally orthogonal: each triangle
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Fig. 1. Voronoi-Delaunay diagram.

edge is perpendicular to the corresponding Vor-
onoi polygon edge. Thus, two complete but in-
dependent sets of nodal variables may be defined
on this Voronoi-Delaunay diagram: one is lo-
cated at the vertices of the Delaunay triangles;
and the other is located at the vertices of the
Voronoi polygons. The governing equations (1),
(2), (3) are, therefore, proposed here to be
discretized either by the Delaunay or the Vor-
onoi mesh systems, independently.

2.3. Boundary condition

In a MOSFET geometry, one of the most
important things is the treatment of the bound-
ary between the gate oxide and the substrate
silicon. In order to model this in a reasonable
manner, let us consider a locally orthogonal
coordinate in the Voronoi Delaunay diagram
shown in fig. 2. Each Delaunay triangle adjacent
to the boundary has a different medium parame-
ter, permitivity, either £,, or ;. This proves that
if considering the locally orthogonal coordinate
constructed by a Voronoi polygon’s and De-
launay triangle’s edge as shown in fig. 2, one can
find that the boundary conditions are different
whether Delaunay system or Voronoi system is
selected. Then we consider the condition for
Poisson equation. For Delaunay system (y-direc-
tion), the boundary condition at interface be-
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Fig. 2. A locally orthogonal coordinate system in the Vor-
onoi-Delaunay diagram.

tween areal and area? is that the transversal
component of electric field strength is continu-
ous, so that

AT (6)
ay areal 6y

at the gate oxide interface. On the other side, for
Voronoi system (x-direction), the boundary con-
dition between areal and area2 is that the
transversal component of electric flux density is

area 2

continuous, so that

2 Y

£ =&y
lax area 1 Zax

(7)

area 2

at the interface.

For the boundary condition of current con-
tinuity equation, J, and J, are not continuous
from substrate silicon to gate oxide. It means
that J, and J, do not flow in oxide but in silicon
only. So the boundary condition for the Voronoi
system is that J, and J, are reflective at the
interface. The boundary condition for the De-
launay system is that the transversal component
of J, and J is non-zero only in one material. For
this reason, the formulation for the current con-
tinuity equations does not change between two
systems. However, the formulation for Poisson
equation is not identical for both systems. This
formulation is described in detail in the fol-
lowing.

2.4. Formulation using finite difference method

For convenience of comparison with a con-
ventional simulation [1], we have selected a
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Fig. 3. Interlaced grid structure. Delaunay and Voronoi systems represented by @ and O nodes. respectively.
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nonuniform, rectangular, interlaced grid form
shown by the inset of fig. 3. In this configuration,
the Delaunay mesh system and the Voronoi
mesh system are located at different sets of grid
points alternate to each others. The device is
divided into horizontal and wvertical regions
where ratios between adjacent grid spaces are
kept constant. Especially for simulating a MOS-
FET device, the mesh numbers at interface be-
tween oxide and silicon and the P-N junctions
are increased to cope with the drastic variation
of potentials and carrier densities at these loca-
tions. The interface between the gate oxide and
the substrate silicon is chosen to coincide with
the Delaunay grid points.

2.4.1. Formulation for Delaunay system

Fig. 4. shows the five-point difference grid for
Delaunay system in the general case. Because
the material boundary is on the solid line, the
region is divided into four blocks with different
permitivities denoted by g, ~ ¢,.

Poisson equation (1) is integrated using
Gauss's theorem, as follows.

oy oy

Jsaxdy+Jsaxdx+Lpdxdy. (8)

The 1st order derivative of ¢ is described
using the forward finite difference for the north
direction as foliows.
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Fig. 4. The coordinate for 5-point FDM in Delaunay system.

A similar derivation is repeated for the other
directions of east, south and west. Finally, we
arrive at the following formula for the Poisson
equation.

'/’N - '/’x

1
3 {(54 dx;,, + g dx,) dy,

ll’
+ (g, dy; + g, dylﬂ) W TX

+ (£, dxyyy + £ dyy) ﬂ‘i—’—””—"

+ (&, d yite d)’,+1)

= pbx;dy; . _ (10)

The above-obtained fundamental equation
based on the Delaunay system is similar to the
conventional one used so far.

2.4.2. Formulation for Voronoi system

Fig. 5 illustrates the finite difference grid for
the Voronoi system. In contrast to the Delaunay
mesh system, the material boundary in this case
is located in between the grid points. So the
material is divided into five blocks with per-
mitivities denoted by €, ~ ¢,, respectively. Also
in this case, the basic Poisson equation is integ-
rated using Gauss’s theorem in the closed area
surrounding a central node to result in the same
eq. (8) mentioned above. What differs here is
that the potential at the interface must be de-
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Fig. 5. The coordinate for 5-point FDM in Voronoi system.



rived before the integration can be performed.
For this, let’s define an ‘“intermediate” node,
denoted by M in fig. 4. Let ¢, denote the
potential at this intermediate node, one has for
the first order derivative of ¢ as follows.

ay U Uk

- =M 2 -1
ay region 0 dy,/z ’ (11 )
ay _ U Yy

ay region | - dy,/2 ’ (11 2)

Here, at the interface the boundary condition is
satisfied by equation (7). Solution of (7) and
(11) yields

— Eox + £y
I g, te
Therefore, the .five-point formulation for Vor-
onoi system is written as follows.

(12)

1 < ‘/’N - ‘/’x
25""{ dy, \T/e, + g,
+ 1 ( e — Uy )}
dy;,; \l/e, +1/g,

_1_< s — Yx
+25y"{dx, T/e, + 1z,

+ 1 ( Yw = Py )}
dx,,, \l/g, +1/g,
= pdx8y; . (13)

The above new equation forms the basis for
our method based on the Voronoi system.

2.5. Current continuity equation

The discretization formula between the grid
points is given from the Scharfetter—Gummel
scheme [9]. For fluids, this scheme is well known
as an exponential method and the discretization
error is comparable with that of the general
formula for central finite difference. Because of
this reason, the Scharfetter—Gummel scheme is
selected for formulating the current continuity
equations for holes and electrons. A five-point
scheme applied to both Delaunay and Voronoi
systems, yields the following equations for elec-
tron and hole continuity equations, respectively.
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‘l‘x - ‘I‘N
dy,.

JH=I-LII

ny
% (1 —exp(dy — U

, 1= exp(—"(wa - di))) ' (14-1)
J=n, ‘/’_xd‘yjﬂ
" <1 - exp(—p():/fx )
i 1—CXPZZX - wN))’ (14-2)

2.6. Simulation results

The sample device MOSFET for simulating
the DC characteristic is an n-channel and poly-
silicon gate MOSFET. The mobility is taken as
constant and no generation and recombination
are accounted for. Fig. 6(a—c) and Fig. 7(a—c)
indicate the internal potential, electron and hole
distributions, respectively, which are simulated
by Delaunay or Voronoi system at VD=5V,
VG =5V, VB =0V. The potential distribution is
as expected for the applied bias conditions. The
electron distribution shows a channel formed at
the interface between oxide and bulk silicon and
extending from the source to the pinch-off point
near the drain. The potential distribution also
shows that holes are dominant in the region deep
into the bulk.

Solutions obtained by Delaunay and Voronoi
systems are in good agreement with each others.

Fig. 8 shows a drain current dependence on
drain voltages as the gate voltage is kept con-
stant at 1, 3 and 5V, respectively.

By contrast, fig. 9 shows a drain current de-
pendence on a gate voltages as the drain voltage
is kept constant at 1 V.

Since the formulation based on the Delaunay
system has been pointed out above to be similar
to the conventional method, it can be concluded
that the results obtained with the newly pro-
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Fig. 6. Predicted distributions obtained by Delaunay system; (a) electrostatic potential, (b) electron concentration, (c) hole

concentration.
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Fig. 8. Drain current versus drain voltage for a MOS transis-
tor. Gate voltages are 1. 3 and SV respectively.
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Fig. 9. Drain current versus gate voltage at drain voltage of
1V.

posed Voronoi formulation are comparable to
those of the conventional method in terms of
accuracy. In other words, the newly developed
method using two interlaced Voronoi and De-
launay systems, not only adds one more degree
of freedom to the simulation of semiconductor
devices, but can be expected to reduce computa-
tion cost as well. This latter problem will be
considered at length in a coming paper.

3. Conclusion

A novel simulation method for semiconductor
devices, is developed based on a discretization
using two interlaced Voronoi-Delaunay mesh
systems. The mathematical formulation, based
on a five-point finite-difference method, applied
to Poisson and electron and hole continuity
equations, yields two sets of formulae: one for
the Delaunay system is similar to the convention-
al model which has been widely used so far; the
other for the Voronoi system is completely new.
Excellent agreement is obtained between simula-
tion results based on these two formulations.

As a conclusion, the newly developed Voronoi
formulation has been proved to be an other
effective simulation model adding more latitude
to the analysis of semiconductor devices.
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