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4bstract-In this paper, we propose a novel formulation for the
crack identification problem in metallic materials. In this
formulation, cracks are regarded as the equivalent field or
potential sources due to the discontinuity of conductivity at
the crack positions. This means that crack identification
probless are reduced to the inverse probleas of searching for
equiva}ent sources. The system equation of the inverse prob-
lem, derived by discretizing the integral equation, is suc-
cessfully solved by the sampled pattern matching method. In
consequence, fairy good results are obtained even in the case
of plural defect probless.

1. INTRODUCTION

The erack or defect identification problem in metallic
materials is of paramount importance in ‘the safety inspections
of aircraft, ships, iron bridges, nuclear reactors and so
tforth [1]. Identifying crack shape, size and position is the
post important objective in nondestructive testing. Therefore
various methods, such as eddy current testing, X-ray computed
tomography, ultrasonic imaging and the electric potential
method, have been developed. These are in essence reduced to
solving the inverse probles.

Numerical methods are widely used as an engineering tool in
accordance vith the developments of modern digital computers
and applied to solving forward problems in which the electro-
magnetic field is unknown and solved with its source distribu-
tion in space [2). In most cases, the system equation in the
forvard problem can be expressed by a regular (non-singular)
matrix, which means that the system matrix is square and has
its inverse matrix. However, in the inverse problem of which
the aim is to obtain the source distribution from the local
Tield information outside "the source existing region, the
system matrix, obtained by discretizing the governing equation
of an integral form,’ is not ‘usually a regular wmatrix
Therefore it is difficult to apply the conventional numerical
methods used in forward problems to solving the inverse
problens. : 4

Metallic structures being examined by nondestructive test-

-ings are basically classified into two major categories

depending on their shapes. One group consists of flat-shape
naterials and the other is composed of pillar-shape materials.

In this paper, ve propose two kinds of crack identification
nethods of metallic materials based on electromagnetic field
analysis. It is suggested that the magnetic field sensing
method is suitable for ‘the defect identification of flat-shape
naterials and the electric potential sensing method is appro-
priate to pillar-shape materials, respectively. In both cases
their governing equations can be expressed in an- integral
form, and they are successfully solved by the sampled pattern
natching (SPM) method (3, 4].

II. GOVERNING EQUATIONS
Hagnetic Field Sensing Nethod

Most magnetostatic field problems are reduced to solving the
following equation assuming the Coulomb gauge V-A=0:

(1/u) V3A = - g, (1a)

vhere g is the magnetic permeability, A is the magnetic vector

potential, and J is the current density [5]. Imposing a
homogeneous open boundary condition, we have ’

A=y § G Jdv (1b)

The Green function G in (1b) for three dimensional fields is
given by '
G=1/(4d xr), (2)

vhere r is a distance bet'eeq the positions of the current
density J and of the vector potential A The magnetic field

intensity M is obtained from the magnetic flux density B as
vell as the vector potential A:

W= (1/8) B= (1/p) 9V x A (3a)
Therefore, we have
H=9x §GJadv. ) (3b)

Figure 1 shows a schematic diagram of the magnetic field
sensing method. The metallic or conductive material of conduc-
tivity o has a crack in vhich no current flows. We assume that
(3b) 1is established with the no-crack condition in the
material where the current density J is uniformly distributed
parallel to the x-axis. On the other hand, if cracks exist in
the material, we have

He =9 x §G (J+Js) dv, &)

vhere Js and He are the equivalent spring current density
caused by the cracks and the magnetic field intensity perturb-
ed by Js, respectively. The current density in a crack is
zero, so that the discontinuity of conductivity causes the
current density Js(=-J) in the crack. The current density Js
faces in the counter direction of the original current density
J. This means, if the current density Js is toward the counter
direction to the current density J, then the current density
in the crack is zero even though the conductivity o exists in
it. Moreover, the current density Js outside the crack is
assumed to diverge from the surface of the crack. As a result,
the effect of cracks in the metallic material can be analyzed
using J + J5 ‘of (&) without the difficulty of a medium
discontinuity problen.

The crack identification of the metallic material is magnet-
fcally carried out by measuring the magnetic field intensity
He and solving the folloving integral equation:

n.-ud-.u:vaGJ.dv. (5)

vhere H has been obtained from (3b) in advance

As shown in Fig. 1, discretizing the metallic material into
small subdivisions AV; (j=1,---,m), (5) takes the following
form:

Jaj x aij AV
b= 3 rurra il b LD (6)

vhere n is the number of magnetic field measurement points,
rij 18 a distance between the points of Hsi and Jsj, and ai;
is the unit space vector in the direction of ri;. Equation (6)
has been derived by assuming that Js; takes a constant value
in the small volume AV;, viz.

Js aij
Vx (=) = J5; Xx ————ro, 7
( iwr ) > 4 mrij? m

Assuming a current dipole vector Qs; [Am] defined as
&, = Js; AV, (8)
Magnetic field
measurement surface

’ ’

Metallic material ¢

Fig. 1. Model for magnetic field sensing method.
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(6) can be revritten as

8 X &ij
Hsi = | Q; | =———, i=1,"+/1, 9
TR T ey n (9)
where o, is unit space vector in the direction of Jsj.
Equation (9) essentially corresponds to the Biot-Savart lav
and the current dipole is equivalent to the current element
vhich is the product of current and its path length

Electric Potential Sensing Aethod

In a stationary current flowing field as shown in Fig. 2,
the relation between the electric potential ¢ and the current
density J in a metallic laterial having the conductivity ¢ is
given by [5]

) -¢cV =J. : (10)
If the metallic material has cracks, (10) can be modified into
-0V = J+ Js, (11)

vhere ¢« is the electric potential !hich,hés been perturbed by
the equivalent current density Js due to the medium disconti-
nuity cause by the cracks. Subtracting (10) from (11) yields

e s = - s, (12a)
vhere |
¢s = ¢pa - O (12b)
The divergence of (12a) becomes .
Vs =-9:3 /0. . (13)

Equation (13) suggests that the electric potential perturba-
tion ¢s caused by cracks can be expressed by the divergence of
the equivalent current density Js springing out of the one
side and absorbed on the other 'side of the cracks. When the
electric potential ¢s has been measured inside the material,
the current density Js .is easily obtained by substituting it
into (12a) or (13). However, in nondestructive testing,  the
electric potential cannot be measured inside the material,
vhich means only the local electric potential is measurable.
Therefore, it is difficult to get a unique solution of Js by
solving the differential equation (12a) or (13).

In (13), the left hand side term does not contain the medium
parameter 0, so that the electric potential ¢s is written in
an integral form:

§6 (Ve ds / 0) dv, ' (14)

vhere the Green function G denotes the geometric relation
betwveen the positions of the potential ¢s.and of its source
V. Js. Consequently, the inverse problem of crack identifica-~
tion can be analyzed by solving the integral equation (14).
Discretizing (14) and applying Gauss's theorem to each of
subdivisions AV; (j=1,:--,m) in the metallic material, we have

§Gi; (Ve Jsi/o) dv = §G1i(Jns/0) dS
X5} 84S

| Isj/o] (Gij* - Gij7)
=|‘Pij| (Gij* - Giy™), i=1,+++,n,  (15)

vhere AS; denotes a surface area of AV;, Is; is a current due
to the current density Jsj, Ps; 1s a voltage dipole vector
(Isj/e) [Vm), and n is a number of measurement points for ¢s.
The superscripts + and - of the Green function Gi; refer to
the positions of the end and starting points of the voltage
dipole vector Psj. respectively. The physical meaning of the
voltage dipole vector Ps; can be interpreted by considering
the time derivatives of electric charges +qs; and -qs; located
at a distance & apart as shown in Fig. 3, because the relation
between Ps; and 9qs;/9t can be expressed by

9qs; /9t = &U?- Jsj dv = | Is; | =0 |Psj|. (16)
¥ith (15),
G = B 1P| (G50 - GyT), deL e, an

Consider a circular metallic pillar in which ve impressed
the current in parallel to the z-axis as shown in Fig. 2.
Under the no-crack condition, .the electric potential along the
circular contour of the surface at a fixed z-axis .coordinate

(14) can be written in the folloving form:
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Metallic
material ¢

Pig. 2. Model for electric potential sensing method
[}

Fig.. 3; Electric potential due to the voltage dipole

takes a constant value. Therefore, ®s=0. However, when a crack
exists, the impressed current does not flow through the crack.
This disturbed current flow is composed of J+Js. The x and y
components of the current density Js cause the electric
potential perturbation ¢s along the contour of the circular
cross section as shown in Fig. 2. Thus, the crack identifica-
tion can be carried out by searching for the x-y components of
the current density Js or the voltage dipole Ps on the cross-
sectional x-y plane from the electric potential distribution
measured along the circular contour enclosing the x-y plane

In tvo dimensional fields, the Green function G is given by

G=-lnr/ (2. (18)
Therefore, (17) can be modified into the following form:

| Psjt _ PR
¢a| = jg e (Inrij- = lnrij*), i=1, -+, n. (19)
vhere rij* and ri;- are depicted in Fig. 3. Denoting ri; as

a distance from the middle of the voltage dipole Ps; to the
position of ¢si as shown in Fig. 3 and assuming 8 (rij, vwe

have
rijt =rij (1 -8 cos 0ij / (2rij)), (20a)
fim =iy {1+ 85 eos 855 / (2, (20b)
where 0i; is the angle of ri; referred to the vector Psj.

Substituting (20a) and (20b) into (19) yields

Py | 8 3;3 A
D S cos 0 + cos® 8ij + +-°),
s Jg; 2w ¢ rij ! 318 ’

6.
x i} | Psj | ———— cos 0ij, i=1,-++,n, . (21)
i 27N

because {8; cos 8:i; / (2 rij)} < L

. SAMPLED PATTBRN MATCHING METHOD
System Equation of Inverse Probleas

Prom (5) and {(14), it is revealed that the crack
identification problem can be reduced to the source position
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searching problem of the equivalent spring current density J-
from local field or potential distribution obtained by mea-
surements. Discretization of (5) and (14) leads to (9) and
(21), respectively. Equations (9) and (21) are the system
equations of the inverse problems of searching for the crack
positions and can be expressed by

U= jg a; d;, (22)

vhere the vectors U and d; are n-th order column vectors. In
the magnetic field case, U d; and a; are given by

U= [Hst, Hs2, ---, HsnlT, (2%a)
d = (1/(4 M} [e;ixa;/r1;2, e;xa2j/re;8,
cee, @jXan;/rnj?]T, (23b)
a; = ]0;|l. (23¢)
In the current floving field case, they are given by .
U= [¢s1, 92, *+», ¢, (24a)
.4 = {1/(2 MLQi/r1i)cos @1, (8i/r2i)cos 0zj,
err, (8i/rni)cos 8a;1T7, (24b)
aj = IRl ' (24¢)

Algorithm for Obtaining a Unique Solution Puttari

the number of field or potential source points,
larger than the number of field or potential
measureaent points, n, because measurements are done locally
in nondestructive testing. Therefore, the following condition
is established in the system equation (22):

EX <1 (25)

Because of the copdition (25), it is obviously difficult to
obtain a unique solution to (22). Namely, the number of
equations, n, is much less than the number of unknowns, m. In
order to surmount this difficulty, we have previously proposed
the sampled pattern matching (SPM) method [8,4] to obtain the
unique source distribution pattern from (22).

In the SPM method, d; in (23b) or (24b) is regarded as a
field or potential pattern vector and the source position
searching is carried out by wmeans of the Cauchy-Schwarz
relation, viz.

7i=Udi /(U ITd D), =1, --.m, (26a)

where a norm || - || denotes a summation of root-mean-square
values of vector elements. Obviously, the maximum of 7
identifies the most dominant source position because (26a)
reveals the angle or pattern wmatching rate between the
measured pattern vector U and the field or potential pattern
vector d; due to the source located at the point j. Moreover,
this calculation takes into account the spatial source vector
angle, because the field or potential pattern vector d; in
(23b) or (24b) depends on not only the current or voltage
dipole positions but also their directions in space. After
finding the first source point k, which is called a pilot
point and has taken the maximum value of 7 ; (j=1,-+-,m) in
(26a), the second source p&int can be found by searching for
the maximum of

Tii = Ue(derds) / (HUH I dutd; ), Tj2k, §=1,-0e,m, (26b)

By continuing with similar procedures to (26a) or (26b), it
is possible to obtain the field or potential source distribu-
tion pattern:

Generally
m, is much

i o} 1w ( d . d + & R (21a)
| m— 1 = —— ee), a
(1 Ul el la o+ &
I do |) 1 v’ dz d + &
2 T x = — +oeee), (27
ol Ul el ldk o+ bl )
a I d |l 1 ( ur dx SLeLeL ) 1)
K m——— = (————— wee), ¢
ol Ul fldel -
| da |l .4 ur ( dn . & + dn . ) (1)
Null = w Null hdall I d« + da || ’
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vhere a' denotes the number of the found pilot points

Equations (27a)-(27d) give a unique solution pattern, not the
exact solutions [3,4].

V. EXAMPLES
Hagnetic Field Sensing Nethod

In order to verify the validity of the magnetic field
sensing method, test examples with one and plural cracks are
demonstrated.

The magnetic field intensity Hs: normal to the measurement
surface shown in Fig. 1 is used for the crack identification
The height h of the measurement surface is 0.104 normalized by
the length of the square material side. Figures 4(a) and 4(b)
shov the results of crack identification by means of (22) with
(28a), (28b) and (23¢c). A crack located at (x:,y:) in Fig.
4(a) and two cracks located at (xi,y1) and (x2,y2) in Fig.
4(b) are assumed to have the same square size, 0.042x0.042,
normalized by the material size. The current distributions
perturbed by the cracks have been computed by the FEM and the
nagnetic field perturbations Hs: for these test examples have
been obtained from the computed current distributions

In the problem of Fig. 4(a), the number of measurement
points s 2x2=4 located at the vertices of the measurement
surface shown in Fig. 1. The small solid circle with a needle
shows the most dominant current dipole vector obtained from
(272)-(27d). The needle refers to the spatial direction of the
current dipole, in this case, the current dipole is leftward
because the impressed current flows in the.positive x direc-
tion as shown in Fig. 1. The current dipole equivalent to the
crack located at (x1,y1) is successfully obtained by the SPM
nethod.

In order to obtain the result of Fig. 4(b), regularly spaced
6x6=36 magnetic field measurement points on the surface in
Fig. 1 were used. The vectors shown in Fig. 4(b) are the top
20% results of (27a)-(27d) obtained by taking account of the
spatial angles of the current dipoles

In a plural crack case, the equivalent currents of the
cracks are disturbed by their mutual interference. This makes
the problem more difficult. In order to overcome this diffi-
culty, the improved SPM method has been applied to the problem
of Figs.  §5(a) and 5(b), where the metallic materials have
plural cracks depicted by squares with a slanted line. The
current dipoles equivalent to the cracks are directed toward

SHee ey2

—e 2 q‘ég eyt

Y Y

lezﬁ

(@ ' (b)
Fig. 4. Crack position identification by measuring magnetic
field intensity. Representation by the current dipoles. (a)One
crack. (b)Two cracks.
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Fig. 5. Crack position identification by measuring magnetic
tield intensity. Representation by the pilot points. (a)Three
cracks. (b)One large and two small cracks
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the counter direction of the impressed current. Therefore, we
should search for the current dipoles satisfying this condi-
tion, i.e. the negative x direction. This method is carried
out by searching for the pilot points where the x component of
the current dipole takes the maximum of 7 ; in (26a), 7kj in
(26b), and so forth. In Figs. 5(a) and 5(b), the found pilot
points are depicted by the dots. The results in those figures
vere obtained from the magnetic field measured at n=6x6=36
regularly spaced points at the same height as in Fig. 4. In
Fig. 5(a), the SPM process has been continued until 7 reaches
its peak value. As a result, the number of the found pilot
points, m', is three. Prom the result in Fig. 5§(a), it is
revealed that the found pilot points have been located near
the cracks. In Fig. 5(b), the SPM process has been continued
yntil the number of pilot points, »', reaches the number of
peasurement points, i.e. m =n=36. Figure 5(b) shows that a
large crack can be identified by the concentration rate of the
found pilot points.

Electric Poteatial Sensing Aethod

To demonstrate the electric potential sensing method, .we
vill pose test problems

Pigures 6(a) and 6(b) show the results obtained by the
electric potential sensing method. The triangles in those
figures refer to the cracks on the circular x-y plane as shown
in Fig. 2. The current density Js on the surface just above
the crack shown in Fig. 2 is mainly directed to the center of
the circular cross section of the pillar. Therefore, the SPM
procedure is carried .out on the x-y plane by searching for
only the voltage dipoles in the radial direction toward the
piddle of the pillar. The dots in Fig. 6(a) and 6(b) shov the
found pilot points. In Fig. 6(a), the number of the pilot
points is w'=5 vwhich has been obtained up to the first peak
of 7, and the number of measuresment points is n=72. Also, in
Fig. 6(b), the SPM process was continued up to the m =n=71
points. From Figs. 6(a) and 6{(b), it 1s revealed that the

crack positions and sizes can be identified from the electric
the contour of the

potential perturbation measured along
metallic material.

Y

L’" (a) T—*" (b)

Fig. 6 Crack position identification by measuring electric
potential. Representation by the pilot points. (a)Two cracks.
(b)One large and tvo small cracks.

V. CONCLUSION -

As shown above, we have proposed a promising method for the
nondestructive testing of wmetallic materials. Also, it has
been revealed that the magnetic field and electric potential
sensing methods are suitable for the crack identification of
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the flat- and pillar-shape materials, respectively. The novel
formulation, based on the equivalent field or potential source
corresponding to the discontinuity of conductivity, has been
proposed for the crack identification problems. As a result,
it has been demonstrated that a combination of the SPM method
vith our new formulation is capable of estimating the posi-
tions and sizes of the cracks even though the material has
plural cracks.
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