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Abstract -- Inverse Problems of Vandermonde
type systems have been solved using the discrete
wavelet transform. The inverse matrices of the
transformed subsystems were calculated, thereby
locating the largest well-conditioned submatrix.
The reduced system was solved and the solution
was inversely transformed. Results were compared
between two different wavelet basis functions,
indicating that Daubechies-4 wavelets lead to
much more accurate solutions than Haar
wavelets. Three simple techniques for
eliminating another systematic noise are alse
proposed to further improve the accuracy of the
final solution.

I. INTRODUCTION

In inverse problems, a Vandermonde type system matrix
appears when the length of an unknown source vector
equals the length of a measured field vector [1]. A possible
way to solve this system is inversion of the system
matrix; however, its determinant rapidly underflows for
finer discretization causing this method to be impractical
{1]. On the other hand, a new approach to Vandermonde
type systems was proposed by Saito [2], where the Haar
wavelet transform was utilized to overcome the ill-
conditioned problem. In this paper, we first introduce the
original concept described in [2], then show our recent
improvements using a different wavelet basis function and
several other techniques.

II. PRINCIPLE

To solve a system matrix equation A x = b, we first
wavelet-transform the matrix A and the right-hand side b
by A A=WAWT and b =Wb where W denotes the
one-dimensional wavelet transform matrix [3], then solve
A' X' = b'. Note that wavelet transform requires that the
sizes of the matrix and the vector are power of two.

In ill-conditioned Vandermonde type systems, the inverse
matrices of both A and A' are not available. Besides, it is
practically true that larger-magnitude components of the A’
matrix are positioned around a corner while smaller-
magnitude components are placed elsewhere. Therefore, by
calculating the condition of the transformed system
submatrices, we can locate the largest well-conditioned
subsystem A". Similarly, the b' vector has larger-
magnitude components around the first half area while
leaving smaller components elsewhere.

Considering the above things, let us reduce the system
to the well-conditioned system A" x" = b" where A", x",
and b" are the submatrix or the subvectors of A', x', and b'.

The solution of this equation is mathematically denoted
by x"=A"-1 p" To reconstruct the wavelet space
solution x' having a longer vector length, we simply add
zero components to the end of the shorter solution vector
x". Finally, we transform to the solution by the inverse
wavelet transform, i.e. x=W T x'. More details of the
wavelet transformation are described in references [3,4,5],
where Ref.[3] contains FORTRAN codes and Ref.[4]
comes with MATLAB codes while Ref. [5] demonstrates
Mathematica codes.

I1I. MODEL

A one-dimensional current sheet model having 32
elements was employed and the magnetic field distribution
near the surface was calculated at 32 locations to simulate
measurement data (Fig. 1). The magnetic field distribution
was given on a line that is parallel to the cross section of
the current sheet. For simplicity, each measurement
position is placed right above each current element. The
magnetic fields and the system matrix A can be calculated
by Ampere's law, assuming that the current flows at the
middle of each element.
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Fig. 1  One-dimensional current sheet model having 32 unknown
currents. Tangential components of the magnetic fields are measured at
32 locations.

IV. NUMERICAL RESULTS AND DISCUSSIONS

When the distance between the current sheet and the
measured line was less than a half width of each element of
the current sheet, the system matrix A became singular.
This is because the neighboring rows or columns of the
system matrix turn to be almost identical. Fig. 2 shows
an example of the 32 x 32 system matrix when the above
distance equals the half width of the current elements.
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Fig. 2 The system matrix A of the model shown in Fig. 1

The wavelet transform approach is used to overcome this
problem.

A. Comparison between Haar and Daubechies-4 wavelets

(a) Haar wavelets

(b) Daubechies-4 wavelets

Fig. 3 Two dimensional wavelet transform of the system matrix A
using (a) Haar and (b) Daubechies-4 wavelets
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Fig. 3 (a) and 3(b) show two dimensional Haar and
Daubechies-4 wavelet transforms of the system matrix A,
each of which is A" whose dimension is 32 x 32. Taking
only 19 x 19 elements from the left bottom corner of Fig.
3(a) resulted in a well-conditioned matrix, which is A"
according to our notation. The condition of the system
matrix was determined by calculating the relative error of
the solution of the matrix equation [6]. Our criterion is to
select the maximum matrix size when the relative error
becomes smaller than 0.1%. In fact, this is the point that
Mathemartica stops showing warning messages. Regarding
Fig.3 (b), the above submatrix size was 18 x 18.

Fig. 4 shows the given (bold) and estimated (thin) current
density distribution using Haar wavelets (a) and
Daubechies-4 wavelets (b). The stair-like vibration in (a)
results from a theoretical disadvantage of the Haar
wavelets because we added zero components to construct
the x' vector. Meanwhile, the Daubechies-4 wavelets
provide more accurate results except for spike noises in the
first half of the estimated current. This is another

systematic noise due to wrap-around problems that is
known in convolution calculation using FFT [3].
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(b) Daubechies-4 wavelets

Fig. 4 Estimated current distribution (thin line) using (a) Haar wavelets
and (b) Daubechies-4 wavelets. Each bold line indicates the given
current distribution.

The spike noise always appears in the first half of the
solution vector, and thus we simply use the last half of the
solution and repeat the same calculation after inverting the
order of the measured magnetic field data as well as the
system matrix. Then we delete the first half of the two
solutions and combine the last half of the two solutions



into one by re-inverting the order of the pre-inverted
solution, leading to the spike-free result shown in Fig. 5.
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Fig.5 Spike-free estimation by combining two solutions

B. Other spike-free procedures

We have discovered two other methods to remove the
undesired spike noise. One method is to provide the field
vector elements that fades out toward zero. A result using
this technique is shown in Fig. 6. In the case of the model
depicted in Fig. 1, this can be performed by placing the
last a few measurement points far away from the current
flowing conductor.
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Fig. 6 A result using another spike-free procedure, where the field
vector was constructed with the elements fading out toward zero.

The bold line indicates the given field, while the thin line depicts the
estimated result.

The other method is to make the sizes of the matrix and
the solution vector less than power of two; subsequently,
to add zeros to increase the sizes to power of two. A result
using this technique is shown in Fig. 7.
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Fig. 7 A result using still another spike-free procedure, where the
number of unknowns is less than power of two. The bold line indicates
the given field, while the thin line depicts the estimated result.

The last two techniques essentially avoid the wrap-around
problems by employing "zero-padding” [3]. This problem
always happens when we use a cyclic matrix operator and
an operated vector that ends with non-zero components.
Lastly, all the computation has been done using
Mathematica [7].

V.CONCLUSIONS

Inverse Problems of Vandermonde type systems have
been solved using the discrete wavelet transform. Results
were compared between two different wavelet basis
functions, indicating that Daubechies-4 wavelets lead to
much more accurate solutions than Haar wavelets. Three -
simple techniques for eliminating systematic noises are
also proposed to further improve the accuracy of the final
solution.
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