A PERPENDICULAR MAGNETIC RECORDING MEDIUM BY ALUMITE

N. TSUYU, Y. SAIT0, H. NAKAMURA, S. HAYANO, A. FURUGOHRI, K. OHTA 1, Y. WAKUI 1 and Y. T KUSHIMA 1

College of Engineering, Hosei University, Koganei-Koganei, Tokyo 184, Japan
School of Science and Engineering, Taga, Tokyo Institute of Technology, Tokyo 152, Japan
Hidad Laboratory, Nippon Gakki Co. Ltd., Haminata 489, Japan

Magnetic properties of electrodeposited alumite media for perpendicular recording were investigated. By means of the pore widening process enabled to realize the coercive force less than 1000 Oe. Misfiring spectra suggested that the direction of magnetization of the processed alumite was almost perpendicular to the surface.

1. Introduction

Efforts have been paid to develop extensively the perpendicular recording techniques proposed by Ikeda [1]. Sputtered Co-Cr films occupied the central position in the investigation of the perpendicular recording media [2]. Inside this film, a number of films such as sputtered film of Cr-Co-Rh [3], Co-Fe [4], Fe-Cr [5], evaporated Co-Fe [6], Co-Fe-O [7], electrodeposited Co film [8] and electrodeless deposited Co-Fe-Mn-Be-P film [9] have been reported as candidates for perpendicular recording media. Bi-ferrite films have been investigated by both coating [10] and sputtering [11] techniques. It has been known that alumite films containing electrodeposited ferromagnetic metals and alloys exhibit the magnetic anisotropy which makes the easy direction of the magnetization perpendicular to the film plane [12]. This anisotropy is concerning the needle-shaped microcrystals developed along the axes of the oxide cells which are grown perpendicularly to the plane. The process for making similar substance to the above material has been widely used in a process for coating or sputtering of an aluminum surface. Unfortunately no successful attempt has been reported for making a perpendicular recording medium by this anodic oxidation method. By the conventional anodic oxidation method, the magnetic alumite film obtained have ever exhibited too high coercive force for magnetic recording now on interest. This is because of the fact that the diameter of the pore is too small. In this work we found a new way to widen the diameter of the pores to depress the coercive force to a value adequate for perpendicular recording.

This paper describes the magnetic properties in the relationship to the perpendicular recording of the magnetic alumite film made by this new anodic oxidation method.

2. Specimens

Perpendicular magnetic recording media examined in the present study were alumite films electrodeposited in an iron sulphate bath. Prior to the electrodeposition process, 4% Mg-Al alloy substrate plates were subjected to an anodic oxidation process. Special attentions were paid for the 99.99% purity of the aluminum raw material in order to ensure the formation of oxide layer with regularly developed hexagonal cells with pores to be mentioned later. The anodic oxidation process was performed in 3% oxalic acid bath at 20°C as usual. Each cell had a pore whose diameter \(D_p \) was a few hundred angstrom. This diameter was too small to realize the coercive force less than around 1000 Oe. In the present study, a special process was introduced in order to widen the pore diameter. In this process, a 1% phosphoric acid bath at 30-40°C employed. In fig. 1 is shown if the electron scanning micrograph of the oxide layer of 4-10 \(\mu \) in thickness was obtained with a well developed hexagonal cell packed cell structure. In the same figure, (b) is to the schematic structure of the same oxide layer.

By the aid of the special current, which was a direct current superposed by an adequate amount of alternating ones, electrodeposition was made in an iron sulphate bath at 40-40°C. Transmission electron microscopic observation revealed that a thin needle like electric trochoidal column formed each pore in the cell from its bottom. As several of the specimens, 5.25 inch wide circular alumite disks with 4 \(\mu \) in thickness were prepared by
polishing their surface carefully. Most of these specimens exhibited 400-1400 Å cell diameter \(D_c\) and 200-1200 Å pore diameter \(D_p\).

3. Experimental results and discussions

Magnetization of the circular films cut out from the magnetic alumina media were examined by a vibrating sample magnetometer. Typical hysteresis curves uncorrected for the demagnetizing effects are shown in Fig. 2a. The coercive forces \(H_C\) and \(H_L\) are shown in Fig. 2b. From Fig. 2a, it is concluded that the magnetization vectors point perpendicularly to the films and after the demagnetization field correction, the rectangular shape which is desirable for the perpendicular recording is obtained. It is noted that \(H_C\) depended only on the pore diameter \(D_p\) and not on the cell diameter \(D_c\) as shown in Fig. 2b. The coercive force below 1000 Oe suitable for perpendicular recording was obtained in the films with pore diameter \(D_p\) larger than 400 Å.

Mössbauer spectroscopy was carried out on a film. In Fig. 3 is shown of a typical result showing two weakened lines indicated that the most part of the magnetization is oriented perpendicularly to the film. The effect of strong perpendicular anisotropy was also observed to a hump at high bit density characteristics by using a ferrite ring head with a gap length of 0.5 mm. The bit density \(D_p\) was 42 kbit/s in this preliminary disk testing. This bit density characteristic was better than any other available longitudinal oriented Co-Ni-P plated disk of good quality.

4. Summary

The large coercive force exhibited in the conventional alumina processed in iron sulphate bath could be reduced by introducing an additional process named as pore widening before electrodeposition. Less than 1000 Oe coercive force related to the pore diameter greater than 400 Å. Shape of hysteresis loops, Mössbauer lines, as well as \(D_p\) showed suitable features for the perpendicular recording process.