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ABSTRACT
In this paper the wavelet-based image compression technique is applied to PIV processing for reducing

noise in images and reducing the physical storage. To determine the effect of the choice of the wavelet
bases, the standard PIV images are compressed by some known wavelet families, Daubechies, Coifman,
and baylkin families. It was found that high order wavelet bases provides good compression performance
for compressing PIV Images, because they have good frequency localization that in turn increases the
energy compaction. The reconstructed PIV image with lower compression ratio may emphasize particle
edges at a relatively high spatial resolution, and the reconstructed PIV image with higher compression ratio
may display the large-scale motion of particles and may deduce noisy. In this study, higher compression
ratio, from 25% to 6.25%, can be realized without losing significant flow information in PIV processing. It
can say that the wavelet image compression technique is effective in PIV system.

Key Words: Digital Particle Image Velocimetry, Discrete Wavelet Transform, Wavelet Image
Compression

1. INTRODUCTION
It is well known that Particle Image Velocimetry

(PIV) is now firmly established as a powerful fluid
dynamics tool to measure instantaneous full-field flow
velocity in the area of fluid mechanics. The evaluation
of a PIV technique is often characterized by its accuracy
and its spatial resolution. However, a certain number of
erroneous vectors in the vector fields may generate with
the use of PIV. One of factors may be related to poor
quality of images. Therefore, it is becoming significant
attention to improve spatial resolution and reliability in
PIV technique.

The International Standard Organization (ISO) has
proposed the JPEG standard for still image compression
and MPEG standards for video compression. These
standards employ discrete cosine transform (DCT) to
reduce the spatial redundancy present in the images or
video frames. We note that DCT has the drawbacks of
blocking artifacts, mosquito noise and aliasing
distortions at high compression ratios. However, the
method of image compression that was often used in
PIV is only to eliminate the low intensity pixels of
image file. Because the low intensity pixels contribute
little information about particle displacement, this type
of image compression has very little effect on the

accuracy of PIV. Recently, Hart (1998)(1) employed
sparse array image correlation to realize compression
ratios of 30:1 or greater and high processing speed of
PIV.

Over the past decade discrete wavelet transform
(DWT) has emerged as a popular technique for image
processing. A wide variety of wavelet-based image
processing has been reported in the literature, however,
few applications can be found in the area of fluid
mechanics. Our motive of this study is to develop an
application of wavelet technique to PIV for improving
spatial resolution and reliability. In this paper, we apply
the wavelet image compression technique to PIV for
simultaneously suppressing random noise in images and
compressing the images. The higher spatial resolution
can be obtained by reducing noise in images, and the
economy in storing, transmitting or further processing
with high speed can be realized based on compressing
the images, i.e., we try to “kill two birds with one
stone”.

2. WAVELET COMPRESSION TECHNIQUE
It is well known that black-and-white images are

often used in PIV, and are expressed in a discrete



numerical form as a function ( )21, xxf  over two

dimensions in which the function value ( )0
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represents the “gray scale” value of the image at the
position or pixel values ( )00 , yx . Therefore, we must

considered to use the discrete type of wavelet transform.
The two-dimensional discrete wavelet transform of

a function ( )21, xxf is given by
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where 
2211 ,;, nmnmWf  is the wavelet transform coefficients,
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orthonormal wavelet basis and is defined as
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which is simply to take the tensor product functions
generated by two one-dimensional wavelet bases. The
oldest example an orthogonal basis is the Haar function,
constructed long before the term “wavelet” was coined.
In the last ten years, various orthogonal wavelet bases,
e.g., Meyer basis, Daubechies basis, Coifman basis,
Battle-Lemarie basis, Baylkin basis, spline basis, and
others, have been constructed. They provide excellent
localization properties in both physical and frequency
spaces. In this study, we have used the following sets of
compactly supported orthonormal wavelets.
(1) Daubechies wavelet with orders 2, 4, 6, 8, 10, 12,

14, 16, 18 and 20;
(2) Coiflets wavelet with orders 6, 12, 18, 24 and 30;
(3) Baylkin wavelet with orders 6, 12 and 18.

The reconstruction of the original scalar field can be
achieved by using
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In general, the image compression is defined as the
representation of image using fewer basis function
coefficients than were originally given, either with or
without loss of information. There are several methods
to compress the image based on wavelets. The approach
of wavelet image compression we employed in this
paper is to setting wavelet coefficients of modes with
insignificant energy to zero. The procedure of this
compressed method can be summarized in three steps:
(1) Compute wavelet coefficients 

2211 ,;, nmnmWf

representing an image in orthonormal wavelets basis.
(2) Specify the number of wavelet coefficients M to

retain, that is, fix the compression ratio M/N where
N is the total number of wavelet coefficients before
compression and delete all other wavelet
coefficients.

(3) Reconstructed the image from compressed wavelet
coefficients using inverse wavelet transform.
We can then adjust the number of wavelet

coefficients M to vary the compression ratio and reduce
the noise in images. For evaluating the compressed
feature, the correlation coefficients between the original
image and compressed image is employed in this paper.

The PIV standard images of the two-dimensional

   
(a) At time T                    (b) At time tT ∆+

Fig.1 PIV standard images
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Fig.2 Comparison of compression performance
with various wavelet bases

wall shear flow, which were proposed by The
Visualization Society of Japan, are used in this paper.
Figure 1 shows two successive PIV images (256 by 256
pixels with an-8bit grayscale) within time interval

st 033.0=∆ .

3. RESULTS AND DISCUSSION
The choice of wavelet base and its order is

important in achieving good compressed performance.
Figure 2 summarizes the performance of various wavelet
families’ bases and orders when compressing PIV
standard image (Fig.1 (a)) (abscissa: compression ratio,
ordinate: correlation coefficients). From Fig.2, it is
evident that as increasing compression ratio, the
correlation coefficients decreased and dropped quickly
near compression ratios 25% and 6.25%. These two
points may indicate important compression ratios in PIV
images. It can be found in Fig.2 that the best subjective
performance was obtained with high order wavelet bases
(Daubechies wavelet with orders 16 to 20, Coiflets
wavelet with orders 18 to 30, and Baylkin wavelet with
orders 12 and 18), because a high order wavelet base
can be designed to have good frequency localization that
in turn increases the energy compaction. The regularity
of wavelet also increases with its order. In addition,
more vanishing moments can be obtained with a higher



 
(a) At time T                    (b) At time tT ∆+

Fig.3 Reconstructed PIV images with
compression ratio 25% and correlation

coefficients 0.94 based on wavelet bases
Coiflet30

 
(a) At time T                 (b) At time tT ∆+

Fig.4 Reconstructed PIV images with
compression ratio 6.25% and correlation
coefficients 0.69 based on wavelet bases

Coiflet30

order wavelet base. On the other hand, although a lower
order wavelet base is expected to have a better time
localization and therefore preserve the crucial edge
information, lower order wavelet bases for compressing
PIV images show smaller correlation coefficients than
that of higher order wavelet bases at same compression
ratios. In this work, the Coiflet base with order 30
provides best compression performance.

In the following, we only discuss the application of
the Coiflet base with order 30 to compress PIV image.
Figures 3 and 4 show a sequence of reconstructed
images that differ in the number of wavelet coefficients
that have been kept. These images are reconstructed
from the remaining 25% and 6.25% of the 65536
wavelet coefficients, with correlation coefficients 0.94
and 0.69, respectively. The reconstructed images with a
lower compress ratio and larger correlation coefficient
in Fig.3 emphasizes particle edges at a relatively high
spatial resolution, while Fig. 4 having higher
compression ratio and smaller correlation coefficient
give us the image of particle group. Corresponding to
the physically intuitive of physics of the flow, Figure 3
indicates the small-scale motion of particles and may
keep same spatial resolution as original images, whereas
Fig.4 exhibits the large-scale motion of particles and
may deduce noisy in original images.

Fig.5 Velocity vector field obtained from Fig.3

Fig.6 Velocity vector field obtained from Fig.4

Figures 5 and 6 display the velocity vector field that
is obtained from Figs.3 and 4 using cross-correlation
PIV method. We prefer to present the raw data. It is
emphasized that displacement vector of the particles
within interrogation window is determined by simply
finding the location of the maximum of the cross-
correlation coefficient without using any sophisticated
algorithms. The velocity vector is then calculated by
simple division of the displacement by the time interval
between two successive images. The velocity vector
field, which was obtained from images with
compression ratio 25% in Fig.3 and was interrogated
with 12x12 pixels interrogation window, is shown in
Fig.5. It is evident that the PIV result of compressed
images is agree with that of original images. This
indicates that the redundancy of information is contained
in PIV image. When increasing compression ratio to
6.25% with 16x16 pixels interrogation window, the
velocity vector field plotted in Fig.6 shows almost same
result as Fig.5. These compressing images still capture
the flow field structure without losing significant
correlation information. When increasing compression
ratio, the size of the interrogation window in PIV also



increases since compressed images describe large-scale
motion of particles.

In order to evaluate the performance of wavelet
compression technique in PIV, we additive the high
frequency to the PIV standard images of Fig.1. For the
purpose of comparison, the velocity vector field
obtained from the original cross-correlation PIV method
is shown in Fig.7, which was interrogated with 8x8
pixels interrogation window and 8x8 pixels grid spacing.
A few of erroneous and unreasonable vectors are still
appeared in velocity vector filed, although the dynamic
mean value method is employ to remove the erroneous
vectors.

The images with compression ratio 25% that are
realized by the wavelet image compression technique
are analyzed by PIV method and the velocity vector
field is showed in Fig.8. This result is consistent with
the accurate solution. This indicates that the noise in
images can be also reduced by the wavelet image
compression technique without losing significant
correlation information. Therefore, the spatial resolution
of PIV can be improved.

From above results, the higher spatial resolution
and image compression can be achieved by the wavelet
image compression technique with out losing
information of flow field structure.

4. SUMMARY
The wavelet compression technique was applied to

PIV processing for reducing the noise and physical
storage in this study. The following main results are
summarized.
(1) A high order wavelet base provides good

compression performance for compressing PIV
Images, because they have good frequency
localization that in turn increases the energy
compaction.

(2) The PIV image with lower compression ratio may
emphasize particle edges at a relatively high spatial
resolution, and the PIV image with higher
compression ratio may display the large-scale
motion of particles.

(3) A higher compression ratio can be realized without
losing significant flow information in PIV
processing.

(4) The higher spatial resolution can be realized by
reducing noise in images based on compressing the
images.
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Fig.7 Velocity vector field based on original PIV

Fig.8 Velocity vector field based on wavelet
image compression with compression ratio

25% and correlation coefficients 0.78
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