PIV based on Wavelet Packet Image Compression Technique

Hui LI (Kagoshima University), Masahiro TAKEL (Nihon University)
Yoshifuru SAITO (Hosei University) and Kiyoshi HORII (Shirayuri College)

ABSTRACT

Our motive of this study is to develop an application of wavelet packet to PIV image compression processing in order to improve the spatial resolution and reliability furthermore. It was found that the reconstructed PIV image with a lower compression ratio may emphasize particle edges at a relatively high spatial resolution, and the reconstructed PIV image with a higher compression ratio may display the large-scale motion of particles and may deduce noisy. In this study, a higher compression ratio of 64:1 can be realized without losing significant flow information in PIV processing. It could say that the wavelet packet could provide a better compression performance than wavelet image compression technique when compressing PIV images.

Keywords: PIV, Wavelet packet Transform, Wavelet packet image compression

1. introduction

Particle Image Velocimetry (PIV) is a non-intrusive flow visualization technique and is now firmly established as a powerful fluid dynamics tool to measure flow velocity in the area of fluid mechanics. Even more important than this remarkably improved performance of the PIV technique, is its unique ability to capture instantaneous full-field flow and thus to allow the detection of spatial structures in unsteady flows quantitatively, which is not possible with other experimental techniques.

It is well known that the evaluation of a PIV technique is often characterized by its accuracy and its spatial resolution. Much progress had been made in PIV technique, however, a certain number of erroneous vectors in the vector fields may generate with the use of PIV, which effects its spatial resolution. One of factors may be related to poor quality of images. Therefore, it is becoming significant attention to improve spatial resolution and reliability in PIV technique. On the other hand, the storage capacity of the recorded PIV images and time evaluation becomes an important problem with the development of PIV technique. For example, a PIV system using a double-pulsed Nd:YAG laser and a cross-correlation CCD array camera can record a pair of images (6008x1016-pixel) with a frequency of 10Hz. For obtaining turbulent flow statistics of one flow condition, 10,000 samples, i.e., 20,000 images containing the information of a flow field, are required to record in real-time to a very large hard disk. It does not only result in the larger physical storage, but also require a great deal time to transfer and process these images. Especially the need for reducing physical storage becomes significant when developing three-dimensional image velocity measurement techniques, such as Holographic PIV (HPIV).

The International Standard Organization (ISO) has proposed the JPEG standard for still image compression and MPEG standards for video compression. These standards employ discrete cosine transform (DCT) to reduce the spatial redundancy present in the images or video frames. We note that DCT has the drawbacks of blocking artifacts, mosquito noise and aliasing distortions at high compression ratios. However, the method of image compression that was often used in PIV is only to eliminate the low intensity pixels of image file. Because the low intensity pixels contribute little information about particle displacement, this type of image compression has very little effect on the
accuracy of PIV. Recently, Hart [11] (1998) employed sparse array image correlation to realize compression ratios of 30:1 or greater and high processing speed of PIV. Freoek et al. [12] (1999) evaluated the accuracy of the PIV measurement of mean RMS velocities when using a MJPEG image compression technique, and the compression ratio was achieved to 12:1.

Over the past decade the applications of discrete wavelet transform (DWT) have been gradually developed and become a popular technique for image processing in various fields. A wide variety of wavelet-based image processing has been reported in the literature. Li et al. [13] (1999) developed an application of the wavelet-based image compression technique to PIV. The higher spatial resolution can be obtained by reducing noise in images, and the economy in storing, transmitting, or further processing with high speed can be realized based on compressing the image. It has been proved that the wavelet image compression technique is effective in PIV system for improving spatial resolution and reliability.

Our motive of this study is to develop an application of wavelet packet to PIV image compression processing in order to improving spatial resolution and reliability furthermore. The wavelet packet can provide a better compression performance than wavelet image compression technique when compressing images.

2. Wavelet packet image compression

Wavelet decomposition simply re-expresses an image in terms of the wavelet basis. In wavelet decomposition we leave the high-frequency part alone and keep splitting the low-frequency part. In wavelet packet decomposition, we can choose to split the high-frequency part also into a low-frequency part and a high-frequency part. So in general, wavelet packet decomposition divides the frequency space into various parts and allows better frequency localization of images.

In general, the image compression is defined as the representation of image using fewer basis function coefficients than were originally given, either with or without loss of information. There are several methods to compress the image based on wavelets. The approach of wavelet packet image compression we employed in this paper is to setting wavelet packet coefficients of modes with insignificant energy to zero. The procedure of this compressed method can be summarized in three steps:

1. Compute the wavelet packet coefficients representing an image in orthonormal wavelets basis.
2. Specify the number of wavelet packet coefficients \(M \) to retain, that is, fix the compression ratio \(M/N \) where \(N \) is the total number of wavelet packet coefficients before compression and delete all other wavelet packet coefficients.
3. Reconstructed the image from compressed wavelet packet coefficients using reverse wavelet packet transform.

We can then adjust the number of wavelet packet coefficients \(M \) to vary the compression ratio. For evaluating the compressed feature, the correlation coefficients between the original image and compressed image is employed in this paper.

From the distribution of wavelet packet coefficients, it was found that coefficients were highly redundant and we need to choose from among all the representation the one that represents the image most efficiently. By "efficient" we mean that an image can be represented by a small number of wavelet packets, the basis for the decomposition is chosen such that the weight of the coefficients is concentrated on a small number of wavelet packets and a large number of coefficients were close to zero.

3. Results

In order to evaluate the characteristics of compressed PIV image based on the wavelet packet image compression technique, a PIV standard image pair of a two-dimensional wall shear flow (256 by 256 pixels with 8-bit grayscale) within time interval \(\Delta t = 0.013s \), which were developed by the Visualization Society of Japan, were used in this study.

To determine the effect of the choice of the wavelet bases, the standard PIV images were compressed by some known wavelet families, such as Daubechies, Coifman and baytikin families. It was found that the best subjective performance was obtained with high order wavelet bases (Daubechies wavelet with orders 16 to 20, Coiflets wavelet with orders 18 to 39, and Baytikin wavelet with orders 12 and 18). It was because a high order wavelet base can be designed to have good frequency localization that in turn increases the energy
compaction. The regularity of wavelet also increased with its order. In addition, more vanishing moments can be obtained using a higher order wavelet basis. On the other hand, although a lower order wavelet basis was expected to have a better space localization and therefore preserved the crucial edge information, lower order wavelet bases for compressing PIV images show smaller correlation coefficients than that of higher order wavelet bases at same compression ratios.

Figure 1 showed the relative error of compressed image with original image plotted as a function of the compression ratio for wavelet packet technique and standard wavelet technique. Daubechies wavelet with orders 20 was used. As illustrated in this figure, the relative error increased with increasing compression ratio and the relative error of wavelet packet image compression technique was lower than that of standard wavelet image compression technique. At the high compression ratio range, the relative error of standard wavelet technique approached to that of wavelet packet technique.

Figure 2 showed a reconstructed image that is reconstructed from the remaining 1.96% of the 65536 wavelet packet coefficients with compression ratio 64:1. This figure having highest compression ratio given us the image of particle group since the compression of the image led to an increase in the particle-image size. Corresponding to the physically intuitive of physics of the flow, it exhibited the large-scale motion of particle-image and can be used to reduce noise in original images and describe the large-scale flow field.

The velocity vector field obtained from the compressed image pair of Fig.2 using 24x24-pixel interrogation window was shown in Fig.3. We prefer to present the raw data. The velocity vector obtained was almost consistent with the accurate solution, and represented a large-scale flow field. Although few of erroneous velocity vectors emerge, we are able to remove those vectors by averaging neighboring reasonable vectors.

4. Remarks
(1) Wavelet packet technique could provide a better compression performance than wavelet compression technique in the image process.
(2) A higher compression ratio of 64:1 was utilized without losing significant flow information in PIV processing.

References

![Graph](image.png)

Fig 1. Relative error of compressed PIV image with original PIV image as a function of compression ratio for wavelet packet technique and standard wavelet technique
(a) At time T

(b) At time $T + \Delta t$

Fig. 2: Reconstructed PIV image pair with a 64:1 compression ratio and correlation coefficient 0.40 based on wavelet packet.

Fig. 3: Velocity vector field obtained from the cross-correlation of PIV image pair with a 64:1 compression ratio in Fig. 2.