ウェーブレット変換によるベクトル動画像の生成

松山佐和(法政大学), 小口雅雄(法政大学), 松山忠保(ウェザーマップ)
倉藤宏(法政大学), 齋井利雄(法政大学)

Vector Fields Animation by Wavelets

Sawa Matsuyama, Yoko Oguchi, Shijo Matuyama
Yoshiharu Saito, Toshiyasu L.Kunii

ABSTRACT

One of the distinguished properties of the discrete wavelets transform is that the major dominant factors can be extracted from the data. We have applied this property to the data compression and reducing the noise data. In the present paper, we have tried to shrink and enlarge the wind vector image data by the three dimensional discrete wavelets transform. Several examples demonstrate the usefulness of our new method to work out the graphical communication tools.

Keywords: Wavelets transform, Three dimensional vector data, Vector image date

1. はじめに

近年、e-mailやwwwなどの新しい情報伝達機関が社会的過熱となり、個人用計算機のわゆるパソコンの低価格化と高性能化による発達の普及とあいまってインター・ネット社会へと突入している。コンピュータにより伝達される情報は、テキスト情報から、より多様で豊富な映像情報を生成している。映像情報は簡単な静止映像情報であってもテキスト情報に比較すると、より高い多様な情報の表現を可能とする。特に、高解像度の静止映像情報の提供・発信を個人レベルで可能とするe-mailやwwwによる静止映像、さらには動画データの提供においても一般的化しつつある。

映像情報は豊富な情報を持つ反面、計算機ハードウェアにおける負荷が大きいため、単純な静止映像ですらもテキスト情報に比べて大きな計算負荷を必要しており、動的な画像情報における信頼性は巨大となる。

ウェーブレット変換はデータの本質的な特徴を抽出する手法として知られている4)。我々は動的画像情報の伝達におけるハードウェアに対する負荷を低減するためのウェーブレット変換により画像の持つ本質的特徴の特徴を抽出し、人間の視覚情報処理に適用した動画情報の生成技術の開発を試みている5)。本稿では、ウェーブレット変換によるベクトル映像に動的画像変換を適用し、情報量の少ないベクトル映像から人間の視覚情報処理能力に応じてベクトル動画像を生成する一方法を述べる。

2. ベクトル画像の風データ

ここではベクトル画像データとして250hPa高度の風データ(NCEP/NMG再解析データ月平均、2.5'×2.5')を使用する。このデータは東西成分、南北成分の2成分を持つベクトルデータである。Fig.1からFig.4は北半球の春を代表する1月、4月、7月、10月の風の様子を1994年について示したものであり、北半球、南半球の夏と冬のジェット気流の特徴がよく表われている。日本海上空の夏のジェット気流の風速は30m/secであり、冬季は約50～60m/secである。また、南半球での冬のジェット気流の風速は約40～50m/secである。ここではウェーブレット変換のデータ数を64×128個とするため、変換の対象の範囲を緯度37.5'から北緯80'、東経30'から西経42.5'とした。

Fig.1 Wind Data(Jun. 1994)
3. ベクトル変換のウェーブプレート変換

一般的に、1次元のウェーブプレート変換は、

\[ S = \overrightarrow{WV} \]  (1)

で表される。ここで、\( V \) は \( n \) 次の列ベクトル、\( S \) はウェーブプレート変換スペクトラム、\( \overrightarrow{W} \) は \( n \times n \) のウェーブプレート変換マトリックスである。

3次元のウェーブプレート変換は、3次元マトリックスの転置行列を

\[ [\overrightarrow{H_{\text{tan}}}]' = \overrightarrow{H_{\text{tan}}} \]  (2)

で表す。

\[ S = \left[ W_n \cdot \left( [W'_n \cdot (\overrightarrow{U} + \overrightarrow{V})] \right) \right]' \]  (3)

で与えられる。ここで、\( S \) はウェーブプレートスペクトラム、\( H \) は \( L \times m \times n \) の重畳マトリックス、\( W_n \)、\( W'_n \) は、それぞれ \( L \times l \)、\( m 	imes m \)、\( n \times n \) のウェーブプレート変換マトリックスである。ここで、\( H \) が2成分以上、\( \overrightarrow{U} + \overrightarrow{V} \) からなるベクトル

\[ H = \overrightarrow{U} + \overrightarrow{V} \]  (4)

であるとき、(3)、(4)式より

\[ S = \left[ W'_n \cdot \left( [W_n \cdot (\overrightarrow{U} + \overrightarrow{V})] \right) \right]' \]  (5)

が得られる。ここで、\( \overrightarrow{U} + \overrightarrow{V} \) はそれぞれ重交するベクトルであるから(5)式は、

\[ S = \left[ W'_n \cdot \left( [W_n \cdot (\overrightarrow{U})] \right) \right]' + \left[ W'_n \cdot \left( [W_n \cdot (\overrightarrow{V})] \right) \right]' \]  (6)
4. ベクトル変換によるベクトル動画像の生成

少ない画像情報を持つながらも望遠度の多い像データを生成する方法として、次の2つの方法を試みた。即ち、他検対の少ない像データをウェーブレット変換により圧縮して低次元化する方法と、少ないう像データをウェーブレット変換して拡大し望遠度の多い像データを生成する方法である。以下にこの2つの方法について述べる。

4.1 ベクトル変換の圧縮

1992年3月から1994年10月までの42か月分の像データをウェーブレット変換データ32枚分とみなし、ウェーブレット変換する。得られたウェーブレット変換スペクトルを、ここでは時間延長（像の枚数）に着目して、スペクトルの高次ウェーブレット近似の要素を抽出しその圧縮する。次にウェーブレット変換スペクトルの残りの要素をゼロとして逆変換し動画像データを復元する。

ウェーブレット変換スペクトルの変換率についてでは参考値をR.B.Iによって求められている。ウェーブレット変換の基底関数にデビッキーの2-12次を使用した場合の変換率（元の画像データと復元後の画像データの相関係数）をFig.6に示す。この例では変換率0.5と0.25共に基底関数の数が増すと相関係数は大きくなっている。
4.2 ベクトル画像の拡大
1991年から1994年の4月間の1月、4月、7月、10月のベクトル画像データ16枚分を基本のベクトル動画データとし、このデータ間を通じて人間の視覚情報能力に合わせたベクトル動画データを生成する。
まず、基本のベクトル動画データ16枚分のデータをウェーブレット变换する。ここで数時間経過（画像の枚数）に着目して、得られたウェーブレット変換スペクトラムの時間軸方向の後にゼロを補い、32枚分のデータ量のウェーブレット変換スペクトラムとする。それぞれ逆変換し32枚の動画データを生成する。基

Fig. 11 Enlarged Wind Vector Image data  
by the 8th Daubechies Basic Function  
(Jan.-Apr. 1994)

Fig. 10 Enlarged Wind Vector Image data  
by the 8th Daubechies Basic Function  
(Jan.-Apr. 1994)

5. おわりに
本稿では、ベクトル動画データとして風データを使用し、このデータに３次元ウェーブレット変換を適用し、データの支配的なウェーブレット成分を抽出した動画データの圧縮および、動画データの拡大による動画データ生成する方法を示した。人間の視覚情報能力に考慮すれば、ある程度十分な結果が得られたといえる。

参考文献
1) 飯藤進生著：Mathematicaによるウェーブレット変換、朝倉書店、1996。
2) 松山伸明、小口隆義、斎藤正行：ウェーブレット変換の気象データへの応用、計算工学論文報告集、Vol.2(1997)，No.2，359-362。