フィルムフィルタとその離散系ワープレート変換による評価

緑川 洋一, 早野 正治, 藤野 昌吉 (法政大)
A Thin Film Noise Filter and Its Evaluation by Discrete Wavelet Transformation
Yoshibi Midorikawa, Seiji Hayano, and Yoshifuru Saito (Hosei University)

1. まえがき

半導体技術の進歩によって様々な電子機器が小型・軽量化されており、特に、ソリッドステート電機や微細電気部品などがその例外である。特に、電気機器の小型化は、コンパクトで高性能な電子機器の開発に不可欠である。しかし、電気機器の小型化は、電子機器の機能を犠牲にすることを避け、電気機器の性能を犠牲にすることを避ける必要がある。このため、電気機器の小型化は、電子機器の性能を犠牲にすることを避け
3. ユーリプト経路を用いたマノス直径評価

3.1 ユーリプト経路解析

Wavelet变换行列を用い、データXとすれば、Wavelet spectrum Sは次式を与えられる。

\[S = W X \]

Wavelet変換行列Wは、関波プロのデータの形と大きさをとり、Wavelet spectrumの始めの方にを、後の方には形となりるように並べ替え、各成分にはさらに同様の変換を進めていくものである。このためWavelet spectrum Sには、変換された回数が異なる成分が存在する。この群ごとに変換を進める。それぞれの波数に応じたレベルごとの変換になる。

3.2 マノス直径評価

測定に使用したスイッチング電圧が電圧を導入して測定したスイッチングエナジーから電圧システムの動くマノス直径測定を図3に示す。図3の測定回路を用いて測定したスイッチング電圧から電圧システムの動くマノス直径のフーリエスペクトルを図4に示す。同様のマノス直径値をフーリエスペクトルを用いたウェーブレット変換を用いた多段階解析をした結果を図6に示す。フーリエ変換では、すべての構成を用いて変換した時間領域データは、変換されてしまう。このため、フーリエスペクトルからは、どのような波形なのかは判定が困難である。

図4 線形回路

Fig. 4 Measurement circuit.

(a) フィルタなし

(b) フィルタあり

図5 フーリエスペクトル

Fig. 5 Fourier spectrum.

(a) Without filter (b) With Wiener filter

4. 結論

本論文では、変形型フィルムコイルを用いたユニバース・スペクトルシスコロジに対するウェーブレット解析を用いた多段階解析で検討した。その結果、ユニバース・フィルタが変形型フィルムコイルを用いて構成されることが判明し、フィルタの特性が計算上の観点であることを示した。

文献

2-333