任意形状コイルのインピーダンス対周波数特性解析に関する研究

○高野賢文 1, 小野田誠 2, 賀重昌志 2

筑波大学 工学部

A study of coil impedance vs. frequency characteristic analysis having arbitrary geometrical shape

T.Kaneko, S.Hymno and Y.Saito

College of Engineering, Hosei University

Abstract

Coil impedance computation having arbitrary shape is relatively difficult task, because the inductance as well as resistance are not simple functions of the geometrical parameters but frequency.

In the present paper, we propose a new semi-analytical approach to compute the impedance vs. frequency characteristics of the coil having arbitrary shape. Any coils having complex geometrical shape can be divided into small conductors having simple geometrical shape. Applying analytical formulas to each of the small sub-sized conductors, each of the inductances and resistances is easily calculated by an analytical approach. Combining whole inductances and resistances taking into account the mutual inducances yields an equivalent circuit of the original coil having complex geometrical shape. Establishing and solving a set of circuit equations about this equivalent circuit make it possible to evaluate the impedance vs. frequency characteristics of the coil.

Simple examples verify our proposed methodology.

1. まえがき

近年、小形素子電子計算機の普及と微細解析技術の足元の造り上げ、磁気電子機器の微細解析技術は量産化に向け、小形化・微細化の流れに伴い、従来のコンピュータにおける計算を十分に支えられなくなる状況にある。特に、大形のコンピュータでは、コンピュータシステムの電気的特性を正確に評価するためには、微細部の形状を考慮したインピーダンスの解析が不可欠であるが、従来の解析手法では、形状の複雑さが解析の困難さを増し、解析が困難である。このため、本報告では、従来の解析手法の困難さを克服し、任意形状のコイルのインピーダンス解析を提案する。

2. 基本原理

2.1 基本解析手法

図1(a)に示すような有限長ソリッドコイルのインピーダンスを考える。このコイルを図1(b)のように平板状に拡大し、簡単な形状のインピーダンスを解析する。このようにしたインピーダンスを用いて、任意形状のコイルのインピーダンスを求めることを提案する。
22 結論
図2に示す等価回路で、Zをインピーダンス行
列とする以下のシステム方程式を得ることが
できる。④

V = ZI
ここで、推進力の両端の電圧をV、断面
の分岐係数をm、コイルの巻き数をnとすると、

V = n \cdot \frac{y_{n+1}}{y_{n}} \cdot \frac{y_{n}}{y_{n-1}}

(9a)

I = \int \left[b \cdot i \right] \cdot \frac{d_{i}}{d_{n}}

(9b)

ここで、(a)は図2の等価回路の電流である。

E_{n-1} = m \cdot \frac{n}{n-1}

(10a)

Z_{m} = \frac{m}{E_{m} \cdot Z_{V}} = \frac{E_{m}^{2}}{E_{m}^{2} \cdot E_{n}^{2}}

(10b)

となる。ここでE_{m}は、\(m \times n \)次のベクトルである。

E_{m} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}

(10c)

3. 作動方法の応用形式
3.1 余分な推進力アイソトピー
非高周波ノルズミコイルのインピーダンスに
に対する推進力特性は、21 篇の着脱方法を使用
して実装した実験を比較する。図3にこの実
験で用いたコイルの形状を示し、また、図2は推
進力と推進力のノルズミコイルの諸定数を示す。
図4(a)インパクト材の衝撃に対する特性

図4(b)インパクト材の衝撃に対する特性

図4(c)インパクト材の衝撃に対する特性

図4(d)インパクト材の衝撃に対する特性

図4(e)インパクト材の衝撃に対する特性

図4(f)インパクト材の衝撃に対する特性

図4(g)インパクト材の衝撃に対する特性

図4(h)インパクト材の衝撃に対する特性

図4(i)インパクト材の衝撃に対する特性

図4(j)インパクト材の衝撃に対する特性

図4(k)インパクト材の衝撃に対する特性

図4(l)インパクト材の衝撃に対する特性

図4(m)インパクト材の衝撃に対する特性

図4(n)インパクト材の衝撃に対する特性

図4(o)インパクト材の衝撃に対する特性

図4(p)インパクト材の衝撃に対する特性

図4(q)インパクト材の衝撃に対する特性

図4(r)インパクト材の衝撃に対する特性

図4(s)インパクト材の衝撃に対する特性

図4(t)インパクト材の衝撃に対する特性

図4(u)インパクト材の衝撃に対する特性

図4(v)インパクト材の衝撃に対する特性

図4(w)インパクト材の衝撃に対する特性

図4(x)インパクト材の衝撃に対する特性

図4(y)インパクト材の衝撃に対する特性

図4(z)インパクト材の衝撃に対する特性
図8 電流分布の周波数特性

図8より、ソレノイドコイルの発生電流が相対的に大きい。また、1つずつ断面だけでなく、コイル全体の
断面において外側に電流が流れていることが判
る。

4. まとめ

本報では電解法を用いることで有Resistance
ソレノイドコイルのインピーダンスが最適化で
あることを計画した。また、コイルの断面の電流
分布が計算可能であることを示した。

参考文献
[2] 高野善正, 電気学会, インフラストラックス研
究会資料, 1997年, No. MAG-97-2-48
"Coil impedance computation having
arbitrary geometrical shape"
IEEE Power electronics specialist
conference, IE-7-6, May 1988
[4] HUGO K. MECKELE, DYNAMIC
CIRCUIT THEORY, PEARSON
PRESS

-140-