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A method of information processings based on the classical field theory is outlined to
derive the modal-wavelet transform (MWT) as a wavelet-like orthonormal transform.

- The theoretical background and application of MWT are described. The bases of MWT
are derived from modal analysis of the potential field equations. Namely, a principal
ides, of MWT is that a numerical data set is regarded as a set of the field potentials or
source densities. A ‘modal matrix, constituting characteristic vectors; derived from the
discretized field equations enables us to carry out an orthonormal transform inasmuch
as the same way as those of conventional discrete wavelets. MWT is-based on this data
modeling to provide multiresolution analysis in an efficient manner. Three-dimensional
MWT demonstrates a classification of a weather satellite infrared animation into back-
ground ‘and cloud-moving frame images.
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1. Introduction

The spread of high performance and reasonably priced computers has stimulated to
establish the large-scale Internet community as well as information resources. Data
handling technologies based on digital computers are of main importance to realize
more efficient networking and computing. Discrete wavelet transform (DWT) may
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be a promise to become a deterministic methodology handling the digital signals
and images, e.g., compressing data quantity, extracting their characteristics, etc.!:?
Moreover, their applications to electromagnetic field calculation, solving forward
and inverse problems, have been investigated and spurred to a faster calculation
algorithm.?* The conventional DWT, however, sometimes suffers from limitation
on subject data size, which must be of power of 2. Thereby, the applications depend
on employed wavelet basis, and it needs an enormous memory installation for imple-
mentation. The principal purpose of this paper is to derive new wavelet basis to
carry out more efficient wavelet analysis.

This paper proposes modal-wavelet transform (MWT, in short) as one of the
DWTs. The bases of MWT ‘are derived from a modal analysis of the discretized
field equations. Regarding a numerical data set as the potential or source density
distribution leads to a discretized data model, i.e. the data set can be represented
by the field equation like the Poisson equation. Then, the modal analysis of the
discretized field equation gives a modal matrix constituting characteristic vectors.
The modal matrix enables us orthonormal transforms in the same nature as DWT.
MWT employs this matrix as one of the wavelet bases. Because we employ the field
equations as data modeling, MWT makes is possible to generate an optimal basis
to the subject data size. '

2. Modal-Wavelet Transform
2.1.. Data representation by means of field theory

To derive a new wavelet basis, we consider a discrete data modeling based on ‘the
classical field theory. Namely, a numerical data set is assumed to be the potential or
source fields. According to the field theory, a scalar field u caused by source density
o could be obtained by solving the differential equation, i.e. Poisson equation:

eViu = -0, (2.1)

where £ is the ‘medium parameter of the field. Also, the scalar field u can be obtained
by fundamental solution:

u= —;—/g(r)adr, (2.2)

where g(r) is Green’s function and r is the distance from the source to reference
points.

Discretization of (2.1) and (2.2) by numerical methods derives the following
system of equations:

LU =f, (2.3)
and

Gf = U, (2.4)
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where f and U represent the source density ¢ and scalar field u in the vector forms,
respectively. Moreover, L and G denote the coefficient matrices derived from the
Laplacian operator in (2.1) and Green’s function in (2.2), respectively.

As an example, let each of pixel values in Fig. 1(a) be a scalar potential assuming
the medium parameter ¢ to be a constant value on the entire field, then applying
L or G~! to Fig. 1(a) yields the source density distribution as shown in Fig. 1(b).
Solving (2.3) or (2.4) with the source density as vector f reproduces the image as
shown in Fig. 2. In particular, Figs. 1(a) and 2(a) are identical in pixel values.
Therefore, our discrete data modeling based on the field equations is capable of
representing numerical data sets.®®

(2) (b)

Fig. 1. Source density representation of a 2D image. (a) Original image (128 x 128 pixels); (b) An
example of source density (128 x 128 pixels).

(a) (b)

Fig. 2. Image recovery from image source density (128 x 128 pixels). (a) Recovered by Poisson
equation (2.3); (b) Recovered by foundamental solution (2.4).

T
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2.2. Modal-wavelet transform

As is well known, the matrices L in (2.3) and G in (2.4) derived by available
discretizing methods, e.g., finite elements, etc., become the symmetrical as well as
positive definite matrices. In case when the vector U has ¢ elements, it is possible
to obtain the characteristic values \;, i = 1,2,...,q, of the matrices L and G,
and their respective characteristic vectors v;, 2 = 1, 2,...,q. The matrix composed
of the characteristic vectors v;, 1 = 1,2,...,¢, as its columns is called the modal
matrix:

Mq= [Vl,Vg,...,Vq]. (2.5)
Because of the orthogonality, it holds following relationship:
MM =1, (2.6)

where the superscript T' refers to a matrix transpose and I, is a ¢ by ¢ identity
matrix. The modal matrix derived from the coefficient matrix L or G has the same
nature as those of the conventional DWT matrices. Figure 3 illustrates the poten-
tial distributions given by the characteristic vectors constituting the matrix M, in
case of a two-dimensional data set model. Consider a two-dimensional rectangular
region governed by (2.1), then a coefficient matrix L in (2.3) is constructed by the
finite element schemes. The orthonormal matrix M, derives from the characteristic
vectors v; of the constructed matrix. The characteristic vectors illustrated in Fig. 3

(b)

(d) (e) ¢y

Fig. 3. Images represented by characteristic vectors [30 x 30 pixels (¢ = 900)]. (a)~(c) vi—v3 hav-
ing the lower level of characteristic values; (d)—(f) vq—2—vq having the higher level of characteristic
values.
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are linearly independent, representing the respective modes in terms of the data
set space.” A linear combination of the characteristic vectors v is possible to rep-
resent. the value variation in a data set, just corresponding to the multiresolution
orthonormal decomposition of the conventional DWT. Hence, we propose to employ
the modal matrix as wavelet~hke transform matrices.

2.3. Transform matriz and basis

The MWT matrices can be derived by various methods of discretizations. The MWT
matrices introduced in the present paper are classified into two types. The first is
the differential equation type that assumes a subject data set to be a potential
field. The other is the integral expression type that assumes a subject data: set
to be the field source distribution. At first, let us consider MWT that is derived
from the differential equation. The simplest system matrix I can be obtained by a
one-dimensional Laplacian operation with equi-spaced: three-point finite difference
approximation. Namely, the matrix L in (2.3) is given by

Viu= -gﬂ ~Upey = 2Up +Upr, T=1,2,...,q, (2.7
where the distance of two adjacent data is assumed to be 1. Then, applying the
Jacobi method yields a modal matrix M, in (2.5).% Therefore, the dimension of
matrix My depends on the number of subdivision of (2.7). This means that it is
possible to generate an optimal basis having the same data size as that of the sub-
ject. In the Laplace partial differential equation, two types of boundary conditions
should be considered, i.e. the Dirichlet- and Neumann-type boundary conditions.
Figures 4(a) and 4(b) illustrate the typical differential equation-based MWT matri-
ces. As shown in Figs. 5 and 6, the bases constrained the Dirichlet- and Neumann-
type boundary conditions to become odd- and even-functions, respectively. The
bases of MWT look like sinusoidal functions, however, the bases are not composed
of a single frequency component. Moreover, the elements constituting the transform
matrices never become the complex numbers like the Fourier transform.

Secondly, let us consider MWT derived from the integral expression. We con-
sider the three-dimensional Green’s function g(r) in (2.2). However, the three-
dimensional Green's function in cylindrical coordinate system takes infinity when
¢(0) due to the integral kernel. In order to remove this difficulty, the matrix G in
(2.4) is given by assuming the minimum distance r; ; = 1, thus,

1 . .

= 1#]

g(,,.)_":{r”" i=1’2"--aQa j=1a2a'-'aQa (28)
1 i=7

where the subscripts i and j refer to the source and reference points, respectively.
Thereby, r; ; represents the distance between them. Since the system matrix derived
from (2.8) becomes symmetrical, then the Jacobi method can be applied to obtain
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Fig. 4. Modal-wavelet transform matrices (64 x 64). (a) Dirichlet-type boundary condition;
(b) Neumann-type boundary condition; (¢) Green’s function-type; (d) Daubechies 2nd order.

its modal matrix in as much the same way as the MWT based on differential equa-
tion. Figures 4(c) and 7 show the MWT matrix and its bases. They have similar pat-
terns to that of the MWT matrix derived under the Dirichlet boundary condition.
Figure 8 shows comparison between the MWT and Daubechies 2nd order wavelets
along with the spectrum of Fig. 1(a). The transform matrix is non-orthogonal to
the subject data set. The major spectrum concentrates around the mother wavelets.
It is also the same nature as the cases when the higher-order wavelets are applied.

2.4. Compressibility

To compare with the conventional DW'T, image compression is carried out. At
first, apply MWT or DWT to Fig. 1(a), then the spectrum are obtained. Secondly,
neglecting the higher level of obtained spectrum compresses the original data quan-
tity. Finally, image recovery is performed by the inverse of MWT or DWT. To
evaluate image recoverability, various compression ratios are applied.

Figure 9 shows comparison of image recovery from 25% compressed image of
Fig. 1(a). MWT of Dirichlet-, Neumann- and Green’s function-types are compared
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Fig. 5. Elements of the row vectors in the matrix shown in Fig. 4(a) and their Fourier amplitude
spectrums. (a)—(d) From the first to fourth row vectors.
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Fig. 6. Elements of the row vectors in the matrix shown in Fig. 4(b) and their Fourier amplitude
spectrums: (a)~(d) From the first to fourth row vectors,

with Daubechies 2nd order. According to the frequency characteristics, MWT recov-
ers the smooth images. Correlation coefficients of Figs. 9(a)-(d) are 0.889, 0.935,
0.930 and 0.887, respectively. Fairly good recoverability is revealed in Fig. 10 show-
ing correlation coefficients versus compressed ratios in MWT and DWT. MWT
keeps-higher recoverability when the data quantity is poor. Moreover, transform
matrix of MWT only depends on the subject data length. Thereby, efficient data
compression can be performed by MWT derived from the field equations.
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Fig. 7. Elements of the row vectors in the matrix shown in Fig. 4(c) and their Fourier amplitude
spectrums. (a)—(d) From the first to fourth row vectors.

(a) (b)
Fig. 8.

(c) (d)

Wavelet spectrum of Fig. 1(a) (128 x 128 pixels). (a) MWT with Dirichlet bound-

ary condition; (b) MWT with Neumann boundary condition; (¢) MWT with Green’s function;

(d) Daubechies 2nd order.

(a)

Fig. 9.

(d)

Comparison of image recovery from the 25% compressed image of Fig. 1(a) (128 x

128 elements). (a) Dirichlet-type boundary condition; (b) Neumann-type boundary condition;
(c) Green’s function-type; (d) Daubechies 2nd order.

3. Applications of Animation Image Analysis

3.1. Infrared animation of weather satellite

Figure 11 shows some frames of an infrared animation observed by the weather satel-
lite Himawari, showing the generation process of typhoon No. 9 in 2000.° Applying
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Fig. 10. Correlation coefficients vs. compressed ratios of the image data Fig. 1(a). Neumann-,
Dirichlet- and Green’s function-types of MWT and Daubechies 2nd, Daubechies 16th, and Coifman
30th-order DWT are evaluated.

() (d)

Fig. 11. Frames of infrared animation by weather satellite Himawari (256x193 pixels). (a) At
18:00, August 10th, 2000; (b) At 22:00, August 10th, 2000; (c) At 10:00, August 11th, 2000; (d) At
14:00, August 11th, 2000.

MWT to this animation, separation of static and dynamic images is demonstrated.
The animation used in this example is composed of 22 frames captured from 18:00
August 10th to 15:00 August 11th in 2000.

3.2. Three-dimensional modal-wavelet transform

In order to carry out MWT to the animation in Fig. 11, the three-dimensional MWT
is applied to red, green, and blue color components independently. Namely, applying
MWT to horizontal-, vertical- and frame-axes of each color component carries out
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animation analysis. Let us consider a one color component of the animation Si,,
having m x n pixels and | frames. Then, its transpose rules are defined by

[Slmn]T = Pmnl, [Smnl]T = Onlms [Snlm]T = Slmn- (3'9)

The three-dimensional MWT gives the modal-wavelet spectrum S},

Stmn = [Mn [Mn[MlSzmn]T]T]T, (3.10)

where M;, M,, and M, are the [ by [, m by m and n by n MWT matrices, respec-
tively. And then, inverse MWT recovers the original animation Sppy:

Slm'n, = MlT i:MmT [MnT[Sl,mn]T] (3.11)

T} T
Since a linear combination of weighted spectrum represents the original animation
Simn, therefore, animation of each wavelet level can be obtained by means of (3.11).

In this demonstration, (3.10) and (3.11) are independently carried out to each
color component. Then, the result of wavelet analysis can be obtained by synthe-
sizing the color images.

3.3. Separation of static and dynamic images

As shown in Figs. 4(b) and 6(a), the lowest level of bases derived under the Neumann
boundary condition is a constant term. This means that the multiresolution analy-
sis to the frame axis is capable of extracting a common static image through entire
frames of animation when employing the Neumann-type MW'T matrix. Inasmuch
as the same way, the dynamic frame images of animation can be extracted. Fig-
ures 12 and 13 show the results of the multiresolution analysis to the frame axis.
Taking the lowest level of MWT multiresolution analysis (3.11) into account yields
the image in Fig. 12. In this case, the generated result has some frames, but all of
frames are identical to Fig. 12. Thus, Fig. 12 is the extracted background image sug-
gesting static air pressure distribution. On the other hand, Fig. 13 shows dynamic
frame images of animation obtained by means of (3.11) without the lowest level of

Fig. 12. Extracted static image (256 x 193 pixels).
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(c) CY

Fig. 13. Frames of extracted dynamic image (256 x 193 pixels). (a) At 18:00, August 10th, 2000;
(b) At 22:00, August 10th, 2000; (c) At 10:00, August 11th, 2000; (d) At 14:00, August 11th,
2000.

spectrum. The animation of which pixels vary can be obtained, showing that the
cloud is moving.

3.4. Comparison with the conventional wavelets

In the conventional DWT, the data sizes [, m and n must be a power of 2. In this
animation analysis, the animation shown in Fig. 11 has 256 x 193 pixels and 22
frames. If we carry out the same analysis with conventional DWT, then [, m and
n described in Sec. 3.2 become 32, 256 and 256, respectively. In this case, zero-
value elements must be added to the original data so that it satisfies these I, m,
and n. On the other hand, [, m, and n in MWT are 22, 256 and 193, respectively.
MWT dispenses with the arrangement of the original data because the dimension
of transform matrix is free from the “power of 2” problem. It is obvious that MWT
accomplishes an efficient analysis from the viewpoint of memory consumption.

4. Conclusions

We have proposed the MWT and its application of animation analysis. Data rep-
resentation by field equations has provided the idea to realize the optimal bases to
subject data size. The modal analysis to potential field equations has led to the
orthonormal matrix having the same nature as those of the conventional wavelets.
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An application of animation analysis has demonstrated the separation of static

and dynamic images with high efficiency in terms of memory consumption compared
with those of the conventional DWT.

Our approach based on the classical field theory is capable of deriving var-

ious kinds of orthonormal bases from the governing differential — as well as
integral — expressions. Thus, our MWT approach has versatile capability not only
to information resource handling but also, to smart computing.
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