IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-23, NO. 5, SEPTEMBER 1987

APPLICATION OF A CHUA TYPE MODEL TO THE

LOSS AND SKIN EFFECT CALCULATIONS

Y. Saito, K. Fukushima, S. Hayano and N. Tsuya
College of Engineering, Hosei University, Kajino Koganei
Tokyo 184, Japan

Abstract: Previously, we have proposed a specific Chua type model, and shown that our model is closely related with the Preisach and Rayleigh models. In the present paper, a simple linearized Chua type model is proposed for the loss and skin effect calculations. As a result, it is found that the hysteresis makes the skin depth deeper.

INTRODUCTION

Recently, considerable effort has been done to represent the magnetization characteristics for the computer oriented design of magnetic devices [1-5]. The models representing magnetization characteristics may be classified into two types. One is a Preisach type model, which assumed that each of domains has a rectangular hysteresis loop and interaction between domains can be introduced by assuming local field acting on domains [4]. Even though the Preisach type model is based on such simple assumptions, it gives valuable results that are in agreement with experimental results [5]. There is an unstable problem for which the Preisach function takes a different value depending on the previous path in the magnetization processes [6]. The other is a Chua type model, which is based on the fact that a trajectory of flux linkage vs. current is uniquely determined by the last point at which the time derivative of flux linkage changes sign. The Chua type model exhibits many important hysteric properties, e.g., the presence of minor loops and an increase in area of the loop with frequency. Moreover, the Chua type model has been successfully applied to the three-dimensional magnetic field problems and also to the power electronics circuits [7-10].

In the present paper, we show that linearization of a specific Chua type model leads to an elliptical approximation of hysteresis loop. By means of this linearized Chua type model, the hysteresis loss formulas are derived. Also, it is shown that an application of this linearized model to a simple one dimensional magnetic field problem gives an interesting relationship between the skin depth and hysteric property.

THE MAGNETIZATION MODEL

Chua Type Model

The magnetization characteristics are divided into the two-major properties. One is a saturation property which is usually represented in terms of a permeability μ. The other is a hysteric property which causes a time lagging flux density B behind the field intensity H. Chua type model assumes that these two-properties are combined into

$$ H = (1/\mu)B + (1/s)dB/dt, \quad (1) $$

where s, t, are respectively the hysteresis coefficient and time [1,2]. In (1), the term $(1/\mu)B$ represents the saturation property and the other term $(1/s)dB/dt$ represents the hysteric property. The parameters μ and s in (1) are determined by considering the conditions $dB/dt=0$ and $B=0$, respectively [11].

Also, a recent paper has shown that the hysteresis coefficient s in (1) is related with the Preisach function Ψ [1] as

$$ s = \Psi (\partial H/\partial t). \quad (2) $$

A Specific Chua Type Model

By considering the time derivative term dB/dt in (1), it is revealed that a term $\mu (dB/dt)$ (where μ is a reversible permeability) must be included in dB/dt, so that (1) may be modified to

$$ H = (1/\mu)B + (1/s)(dB/dt) + \mu (dB/dt). \quad (3) $$

(3) is a specific Chua type model, and it is possible to show that a relationship between the hysteresis coefficient s in (3) and Preisach function Ψ is still held as (2). An alternative derivation of (3) has been reported in [2]. By means of (2), it is possible to write (3) as

$$ H + \mu (\Psi - \mu) = (1/\mu)B + (1/s)dB/dt. \quad (4) $$

When we assume that the parameters μ, Ψ, Ψ in (4) are constant values, then an initial magnetization curve by (4) can be obtained as

$$ B = \mu H + \mu (\Psi - \mu) [1 - \exp(-\Psi t/\mu)] \quad (5) $$

where $\mu < \Psi, \exp(-\Psi t/\mu) \sim 1 - \Psi t/\mu + (1/2)(\Psi t/\mu)^2$ are assumed.

In the weakly magnetized region, following Rayleigh's initial magnetization curve is established:

$$ B = \mu H + (1/2)\Psi H \quad (6) $$

where μ, Ψ are respectively the initial permeability and Rayleigh constant [12]. Comparison (5) with (6) reveals that the specific Chua type model (3) gives the Rayleigh's initial magnetization curve when the initial permeability μ and Rayleigh constant Ψ are respectively equivalent to the reversible permeability μ_r and Preisach function Ψ.

Hysteresis Loss

Let the parameters μ, μ_r, Ψ in (3) be set by the constant values, then (3) becomes to a linear magnetization model whose hysteresis loops are approximated by the elliptical loops. By means of this linearized model, the hysteresis loss is given by

$$ P_h = (1/2)[\mu (\mu - \mu_r) / (s^2 + \omega^2)^2] \omega^2 H_m^2, \quad (7) $$

where a sinusoidal steady state has been assumed; ω, H_m are respectively the angular velocity and maximum field intensity.

In the weakly magnetized region, the hysteresis coefficient s is expressed by

$$ s = \Psi H_m \quad (8) $$

0018-9464/87/0900-2227$01.00 © 1987 IEEE
because (2) is held. Moreover, by means of (5) and (6), the Preisach function \(\psi \) and reversible permeability \(\mu_r \) are respectively equivalent to the Rayleigh constant \(\dot{\psi} \) and initial permeability \(\mu_t \) so that

\[
\psi \equiv \rho = (B / H) - \mu_t
\]

(9)

Substitution of (8) and (9) into (7) yields

\[
P_h = \mu_0 (\mu_r - \mu_t) \pi \Psi \frac{H_m^3}{(\mu_r - \mu_t)^2 + \mu_0^2}
\]

(10)

\[
\sim (\pi/2) f \psi H_m^3
\]

where \(\omega = 2 \pi f \) (\(f \) : frequency); and \(\mu_r < \mu_t \) is assumed. (10) is a hysteresis loss formula in the weakly magnetized region. On the other side, the hysteresis loss by Rayleigh loop is

\[
P_h = \frac{4}{3} \mu_0 (\psi H_m^3)
\]

(11)

where \(\omega \rightarrow \infty \) is assumed [12]. Comparison (10) with (11) reveals that (10) has essentially similar nature to those of (11) but a constant term \(\pi/2 \) in (10) is somewhat larger than \(4/3 \) in (11). Thus, our elliptical approximation model gives a loss formula (10) corresponding to Rayleigh model in the weakly magnetized region.

In the highly magnetized region, the hysteresis coefficient \(s \) is approximately given by

\[
s = \omega (B - \mu_t H) / H \sim \omega B / H_c
\]

(12)

where \(B, H \) are respectively the maximum flux density and coercive field; and \(B > H \) is assumed. Substitution of (12) into (7) yields

\[
P_h = \mu_0 (\mu_r - \mu_t) \pi \frac{H_m^3}{(\mu_r - \mu_t)^2 + \mu_0^2}
\]

(10)

\[
\sim (\pi/2) f \psi H_m^3
\]

where \(\omega \rightarrow \infty \) is assumed [12]. Comparison (10) with (11) reveals that (10) has essentially similar nature to those of (11) but a constant term \(\pi/2 \) in (10) is somewhat larger than \(4/3 \) in (11). Thus, our elliptical approximation model gives a loss formula (10) corresponding to Rayleigh model in the weakly magnetized region.

In the highly magnetized region, the hysteresis coefficient \(s \) is approximately given by

\[
s = \omega (B - \mu_t H) / H \sim \omega B / H_c
\]

(12)

where \(B, H \) are respectively the maximum flux density and coercive field; and \(B > H \) is assumed. Substitution of (12) into (7) yields

\[
P_h = \mu_0 (\mu_r - \mu_t) \pi \frac{H_m^3}{(\mu_r - \mu_t)^2 + \mu_0^2}
\]

(10)

\[
\sim (\pi/2) f \psi H_m^3
\]

where \(\omega \rightarrow \infty \) is assumed [12]. Comparison (10) with (11) reveals that (10) has essentially similar nature to those of (11) but a constant term \(\pi/2 \) in (10) is somewhat larger than \(4/3 \) in (11). Thus, our elliptical approximation model gives a loss formula (10) corresponding to Rayleigh model in the weakly magnetized region.

In the highly magnetized region, the hysteresis coefficient \(s \) is approximately given by

\[
s = \omega (B - \mu_t H) / H \sim \omega B / H_c
\]

(12)

where \(B, H \) are respectively the maximum flux density and coercive field; and \(B > H \) is assumed. Substitution of (12) into (7) yields

\[
P_h = \mu_0 (\mu_r - \mu_t) \pi \frac{H_m^3}{(\mu_r - \mu_t)^2 + \mu_0^2}
\]

(10)

\[
\sim (\pi/2) f \psi H_m^3
\]

where \(\omega \rightarrow \infty \) is assumed [12]. Comparison (10) with (11) reveals that (10) has essentially similar nature to those of (11) but a constant term \(\pi/2 \) in (10) is somewhat larger than \(4/3 \) in (11). Thus, our elliptical approximation model gives a loss formula (10) corresponding to Rayleigh model in the weakly magnetized region.

In the highly magnetized region, the hysteresis coefficient \(s \) is approximately given by

\[
s = \omega (B - \mu_t H) / H \sim \omega B / H_c
\]

(12)

where \(B, H \) are respectively the maximum flux density and coercive field; and \(B > H \) is assumed. Substitution of (12) into (7) yields

\[
P_h = \mu_0 (\mu_r - \mu_t) \pi \frac{H_m^3}{(\mu_r - \mu_t)^2 + \mu_0^2}
\]

(10)

\[
\sim (\pi/2) f \psi H_m^3
\]

where \(\omega \rightarrow \infty \) is assumed [12]. Comparison (10) with (11) reveals that (10) has essentially similar nature to those of (11) but a constant term \(\pi/2 \) in (10) is somewhat larger than \(4/3 \) in (11). Thus, our elliptical approximation model gives a loss formula (10) corresponding to Rayleigh model in the weakly magnetized region.

In the highly magnetized region, the hysteresis coefficient \(s \) is approximately given by

\[
s = \omega (B - \mu_t H) / H \sim \omega B / H_c
\]

(12)

where \(B, H \) are respectively the maximum flux density and coercive field; and \(B > H \) is assumed. Substitution of (12) into (7) yields

\[
P_h = \mu_0 (\mu_r - \mu_t) \pi \frac{H_m^3}{(\mu_r - \mu_t)^2 + \mu_0^2}
\]

(10)

\[
\sim (\pi/2) f \psi H_m^3
\]

where \(\omega \rightarrow \infty \) is assumed [12]. Comparison (10) with (11) reveals that (10) has essentially similar nature to those of (11) but a constant term \(\pi/2 \) in (10) is somewhat larger than \(4/3 \) in (11). Thus, our elliptical approximation model gives a loss formula (10) corresponding to Rayleigh model in the weakly magnetized region.
CONCLUSION

As shown above, we have elucidated that a specific Chua type model is capable of representing the hysteresis loss, and that the skin depth may be greatly dominated by the hysteretic property.

Finally, the authors greatly appreciate to Mr. Y. Katoh and Mr. K. Takahashi for their cooperations.

REFERENCES